

Nonlinear dispersive waves in acoustics

Vassos Achilleos

O. Richoux, G. Theocharis, C. Desjouy, V. Tournat

• Laboratoire d'Acoustique de l'Université du Mans (LAUM) UMP 6613, Institut d'Acoustique - Graduate School (IA-GS), CNRS,

Localised nonlinear waves in dispersive media

Localised nonlinear waves in dispersive media

Free water waves

Optical fibers

Nature Communications 7, Article number: 13136 (2016)

Superfluids : Bose-Einstein Condenstates

(mu)

N -3

-40

Nature Physics 4, 496–501 (2008)

Water tanks

Phys. Rev. Lett. 122, 214502 (2019)

Phys. Lett. A 375 (2011) 642-646

Localised nonlinear waves in dispersive media

Free water waves

Optical fibers

Nature Communications 7, Article number: 13136 (2016)

Superfluids : Bosie-Einstein Condestates

(mn)

Nature Physics 4, 496–501 (2008)

Water tanks

Phys. Rev. Lett. 122, 214502 (2019)

Phys. Lett. A 375 (2011) 642-646

Why not in audible sound?

J. Fluid Mech. (2004), vol. 504, pp. 271–299. © 2004 Cambridge University Press DOI: 10.1017/S0022112004008109 Printed in the United Kingdom

Verification of acoustic solitary waves

271

By N. SUGIMOTO, M. MASUDA, K. YAMASHITA AND H. HORIMOTO

Division of Nonlinear Mechanics, Department of Mechanical Science, Graduate School of Engineering Science, University of Osaka, Toyonaka, Osaka 560-8531, Japan

(Received 22 July 2003 and in revised form 18 November 2003)

width of the soliton

propagation velocity depends on particle velocity

Phys. Rev. E 91, 023204 (2015)

Electroacoustic analogue - Transmission line approach

$$\frac{d^2 p_n}{dt^2} - \frac{c_0^2}{\kappa d^2} \left(1 + \frac{1}{\omega_0^2} \frac{d^2}{dt^2} \right) \hat{\delta}^2 p_n + \frac{1}{\kappa} \frac{d^2}{dt^2} \left(1 + \frac{1}{\omega_0^2} \frac{d^2}{dt^2} \right) \left[p_n \left(1 - 2\frac{\beta_0}{\varrho_0 c_0^2} p_n \right) \right] = 0$$

Phys. Rev. E 91, 023204 (2015)

1

low amplitude dispersion

1-D approximation - Transfer matrix method

$$\cos(2q\alpha) = \cos^2\left(k\tilde{\alpha}\right) - \frac{S_1^2 + S_2^2}{2S_1S_2}\sin^2\left(k\tilde{\alpha}\right) \qquad \omega = ck$$

effective dispersive nonlinear medium

$$p_{tt} - b(p^2)_{tt} = \tilde{c}^2 p_{xx} + \beta_m p_{xxtt} + \beta_x p_{xxxx}$$

Experiments

Experiments

One of many realisations

Experiments and effect of losses

2D numerical simulations - soliton decay

 $x_4=1.33~{
m m}$

Experiments and the effect of losses

2D numerical simulations - soliton decay $x_2 = 0.35 \text{ m}$ $x_4 = 1.33 \text{ m}$

Comparison with theoretical prediction

$$p(x,t) = A \operatorname{sech}^2 \left(w \left(x - \nu t \right) \right) \qquad A = \frac{3 \left(\nu^2 - \tilde{c}^2 \right)}{2b\nu^2}, \quad w = \left((\nu^2 - \tilde{c}^2) / 4(\beta_x + \beta_m \nu^2)^{1/2} \right)$$

Journal of Sound and Vibration 546 117433 (2023)

Flexible Elastic Metamaterials **Pulse excitations**

B. Deng et al, J. Appl. Phys. 130, 040901 (2021)

$$\frac{\partial^2 U_n}{\partial T^2} = U_{n+1} - 2U_n + U_{n-1} - \frac{\cos \theta_{n+1} - \cos \theta_{n-1}}{2}$$

 $\frac{1}{\alpha^2}\frac{\partial^2\theta_n}{\partial T^2} = -K_\theta \left(\theta_{n+1} + 4\theta_n + \theta_{n-1}\right) + K_s \cos\theta_n \left[\sin\theta_{n+1} + \sin\theta_{n-1} - 2\sin\theta_n\right]$

$$-\sin\theta_n \left[2 \left(U_{n+1} - U_{n-1} \right) + 4 - 2\cos\theta_n - \cos\theta_{n+1} - \cos\theta_{n-1} \right]$$

Effective PDE At long wavelengths $\lambda \gg a$

$$\frac{\partial^2 U}{\partial T^2} = \frac{\partial^2 U}{\partial X^2} + \theta \frac{\partial \theta}{\partial X},$$

$$\frac{\partial^2 \theta}{\partial T^2} = C_1 \frac{\partial^2 \theta}{\partial X^2} - C_2 \theta - C_3 \theta^3 - C_4 \theta \frac{\partial U}{\partial X}$$

Le Mans

At long wavelengths $\lambda \gg a$

$$\begin{aligned} \frac{\partial^2 U}{\partial T^2} &= \frac{\partial^2 U}{\partial X^2} + \theta \frac{\partial \theta}{\partial X} \,, \\ \frac{\partial^2 \theta}{\partial T^2} &= C_1 \frac{\partial^2 \theta}{\partial X^2} - C_2 \theta - C_3 \theta^3 - C_4 \theta \frac{\partial U}{\partial X} \end{aligned}$$

Use multiple scales analyisis

 $U = \epsilon u_1 + \epsilon^2 u_2 + \epsilon^3 u_3 + \dots$ $\theta = \epsilon \theta_1 + \epsilon^2 \theta_2 + \epsilon^3 \theta_3 + \dots$

At long wavelengths $\lambda \gg a$

$$\begin{aligned} \frac{\partial^2 U}{\partial T^2} &= \frac{\partial^2 U}{\partial X^2} + \theta \frac{\partial \theta}{\partial X} \,, \\ \frac{\partial^2 \theta}{\partial T^2} &= C_1 \frac{\partial^2 \theta}{\partial X^2} - C_2 \theta - C_3 \theta^3 - C_4 \theta \frac{\partial U}{\partial X} \end{aligned}$$

Use multiple scales analyisis

$$U = \epsilon u_1 + \epsilon^2 u_2 + \epsilon^3 u_3 + \dots$$
$$\theta = \epsilon \theta_1 + \epsilon^2 \theta_2 + \epsilon^3 \theta_3 + \dots$$

Larger rotations

Université

Nonlinear Schrödinger Equation for the envelope

$$\theta = B(X_1, T_1, X_2, T_2, ...)e^{i(kX_0 - \omega T_0)} + c.c_s$$

$$i\frac{\partial B}{\partial \tilde{\tau}_2} + \frac{1}{2}\frac{\partial^2 B}{\partial \xi_1^2} + g|B|^2 B = 0$$

Derive conditions for Modulational Instability

$$B(\xi_1, \tilde{\tau}_2) = (A_0 + b(\xi_1, \tilde{\tau}_2))e^{i(k_0\xi_1 - \omega_0\tilde{\tau}_2 + \tilde{\theta}(\xi_1, \tilde{\tau}_2))}$$
$$b = f_1 e^{i(K\xi_1 - \Omega\tilde{\tau}_2)}, \quad \tilde{\theta} = f_2 e^{i(K\xi_1 - \Omega\tilde{\tau}_2)}$$
$$\Omega = Kk_0 \pm |K| \sqrt{\frac{K^2}{4} - gA_0^2}$$

If g > 0 and $K < |K_c| = 2A_0\sqrt{g}$

The perturbations grow with time

$$\Omega = \Omega_R \pm i\Omega_I$$
$$\Omega_I = |K| A_0 \sqrt{g - \frac{K^2}{4A_0^2}}$$

😽 Le Mans

I. C. Modulated plane wave

 $\theta(n,0) = 2\epsilon(1+b_0)\cos(kn),$ $\dot{\theta}(n,0) = 2\epsilon\omega(k)(1+b_0)\sin(kn)$

 $\begin{aligned} \theta(n,0) &= 2\epsilon(1+b_0)\cos(kn) \,,\\ \dot{\theta}(n,0) &= 2\epsilon\omega(k)(1+b_0)\sin(kn) \end{aligned}$

Rotations alone are unstable

 $-0.02 -0.01 \delta^0 0.01$

I. C. Modulated plane wave

 $\theta(n,0) = 2\epsilon(1+b_0)\cos(kn),$ $\dot{\theta}(n,0) = 2\epsilon\omega(k)(1+b_0)\sin(kn)$ **Coupling stabilises the system**

A. Demiguel, V. Achilleos, G. Theocaris, V. Tournat, arXiv: 2211.08531

Main perspectives

1. Instability in smaller structures, driven dumped problem

2. Formation of localized nonlinear waves and rogue waves

Post-doc positions

Experiments with nonlinear waves in flexible elastic metamaterials ANR project **ExFLEM :** collaboration LAUM (Le Mans), supméca (Paris)

Absorption of nonlinear waves using passive and active scatterers ERC - StG project **NASA:** LAUM (Le Mans)