

Phase Conjugation of Multiply Scattered Fluorescent Light with a Wavefront Sensor

Marc Guillon Université Paris Cité

Tengfei Wu

Yixuan Zhang

Baptiste Blochet

Pascal Berto

Image degradation through scattering biological samples

Scattering compensation by focus scanning holographic aberration probing (F-SHARP)

loannis N. Papadopoulos', Jean-Sébastien Jouhanneau², James F. A. Poulet² and Benjamin Judkewitz¹*

M.A.May et al. Nat. Commun. 2021

With aberrations

V. Ntziachristos, Nat. Methods, 7(8) (2010) N. Ji, Nat. Methods, 14(4) (2017)

Image degradation through scattering biological samples

With aberrations

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text>

V. Ntziachristos, Nat. Methods, 7(8) (2010) N. Ji, Nat. Methods, 14(4) (2017)

Wavefront measurement

Direct wavefront measurement

Advantages of Shack-Hartmann WFS :

- simple and robust
- compatible with broadband guide stars
- no need for a reference beam

N. Ji, Nat. Methods 14(4), 374 (2017)

At 100-µm depth At 500-µm depth

Drawback of Shack-Hartmann WFS : Only measure low-order aberrations...

WFS enables High-resolution phase imaging...

HeLa cells (x40)Neurons (x40)Unpublished data (Collab. with M. Kappes & M. Oheim)

... of smooth patterns

Can a high-resolution WFS solve the high-resolution adaptive optics problem and compensate multiple-scattering?

Remaining difficulties :

- The presence of (screw) phase dislocations in speckles
- Limited spectral bandwidth of multiply scattering samples
- The low photon budget of fluorescence signals

Topological phase singularities in speckle patterns

Vortex reconstruction with a WFS

T. Wu, P. Berto, M. Guillon, Appl. Phys. Lett. 118, 251102 (2021)

Vortex reconstruction with a WFS

T. Wu, P. Berto, M. Guillon, Appl. Phys. Lett. 118, 251102 (2021)

Validation and optimization of complex field measurement with WFS

WaveFront Sensing (WFS) Digital Holography (DH) VS. Ref. beam DH WFS Difference Phase п 0 -π Intensity

Digital optical phase conjugation through scattering sample with WFS

Experimental results---spinal cord with 720um thickness

The Importance of optical vortices for phase conjugation

Flat phase

The Importance of optical vortices for phase conjugation

The Importance of optical vortices for phase conjugation

Using a fluorescent guide-star?

Two main challenges :

- low photon budget
- Spectral width and Stokes' shift

Using a fluorescent guide-star?

Two main challenges :

- low photon budget
- Spectral width and Stokes' shift

Limitation : readout noise of the camera Requirement : ~ 10⁸ photons for 3000 spatial modes (Camera: 1e-/px RMS readout noise)

[1] M. Jang, C. Yang, I.M. Vellekoop, Phys. Rev. Lett. 118, 093902 (2017)

Using a fluoresent guide-star?

Two main challenges :

- low photon budget
- Spectral width and Stokes' shift

Using a fluorescent guide-star?

Two main challenges :

- low photon budget
- Spectral width and Stokes' shift

Sample: 500µm of parafilm (g =0.77, ls =170µm@532nm **) **A. Boniface, et al., Optica 6, 1381–1385 (2019)

Using a fluorescent guide-star!

Summary & perspectives

• Summary

Single-shot high resolution WFS allows measuring to complex wavefronts (speckles)

→ Scattering compensation possible by WFS-based phase conjugation

→ Phase conjugation of fluorescent light possible thanks to the large spectral correlation width of forward scattering media ($\ell_s \ll L \ll \ell^*$)

• Next steps

In depth fluorescent imaging / photo-excitation

Chromatic "memory effect" in forward multiply scattering samples

 $(\ell_s \ll L \ll \ell^*)$

 $\Delta\lambda$ > 100nm for 1 mm-thick fixed brain slice [1]

"Polychromatic interferences" of two speckles with Gaussian statistics:

$$(I - \langle I \rangle)(I' - \langle I' \rangle) = |\langle EE'^* \rangle|^2$$

λ=678r

"We emphasize that even if the measurement of a speckle pattern is an intensity measurement [...] nonetheless, a comparison of two such photographs for different input waves yields information on both the phase and amplitude differences of these waves." I. Freund, Physica A 168, 49(1990)

0.6

0.4

0.2

480

520

560

Surface diffuser 0 600 640 680 λ (nm)

[1] A.G. Vesga et al., Opt. Express 27 (2019)
[2] L. Zhu et al., Optica 7, 338 (2020)
[3] P. Arjmand et al., Opt. Express 29(5), 6963 (2021)

Fraunhofer diffraction (at infinity) :

$$\tilde{E}(X,Y) = -\frac{e^{2ikf}}{i\lambda f} \int E(x,y) e^{ik\frac{xX+yY}{f}} dxdy$$

$$T = e^{ik\delta(\mathbf{r})} \simeq 1 + ik\delta(\mathbf{r})$$

Fraunhofer diffraction (at infinity) : $\tilde{E}(X,Y) = -\frac{e^{2ikf}}{i\lambda f} \int E(x,y)e^{ik\frac{xX+yY}{f}}dxdy$

$$T = e^{ik\delta(\mathbf{r})} \simeq 1 + ik\delta(\mathbf{r})$$

Fresnel diffraction :

$$E(x,y,z) = \frac{e^{ikz}}{i\lambda z} \int E(x,y,0) e^{i\pi \frac{(x-x')^2 + (y-y')^2}{\lambda z}} dx' dy$$

Chromato-axial "memory effect"

Correlation product

Yixuan Zhang

Pascal Berto Institut de la vision

Thank you for your attention!

