Critical velocity for superfluidity in reduced dimensions

From matter to light quantum fluids

Juliette Huynh

December 8, 2022

JH, Mathias Albert, and Pierre-Élie Larré. (2022), Phys. Rev. A 105, 023305

Critical velocity for superfluidify in 1D & 2D

JH

Frédéric Hébert

Pierre-Élie Larré

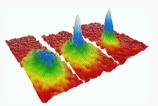
Mathias Albert

Theoretical Physics team @ Inphyni Nice

Introduction

A BRIEF HISTORY OF SUPERFLUIDITY

$1^{\rm st}$ evidence of BEC



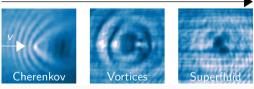
JILA, MIT 1995

SF observed in many systems:

- BEC (Ketterle, Cornell, Dalibard...)
- Polaritons condensates (Richard, Bramati, Bloch, Amo...)
- **Paraxial fluids of light** (Fleischer, Faccio, Michel, Bellec, Glorieux...)

CRITICAL VELOCITY FOR SUPERFLUIDITY

Decreasing velocity v



Michel, Nat. Commun (2018) Eloy, EPL (2021)

Flow past an impurity without any loss of kinetic energy when $v < v_c$

Landau criterion: small obstacles only

State of the art

1D: wide or narrow gaussian, cubic NL (Hakim, Leboeuf, Pavloff)

2D: wide impenetrable cylinder, cubic NL (Frisch, Rica, Swerger, Berloff, Dalibard)

Our contribution

Arbitrary obstacle

General nonlinearity g(n)

Treatment of the losses (1D)

Analytical results in 1D & 2D

Dilute ultracold atomic gases $(n = |\psi|^2)$ $i\hbar \partial_t \psi = \left[-\frac{\hbar^2}{2m}\nabla^2 + U(\mathbf{r}) + gn^{\nu}\right]\psi$

Paraxial fluids of light $(I = |E|^2)$ $i\partial_z E = \left[-\frac{\nabla^2}{2k} + U(\mathbf{r}) - \frac{\omega n_2}{c} \frac{I}{1 + I/I_{\text{sat}}} - \frac{i\alpha}{2} \right] E$

Our contribution

Arbitrary obstacle

General nonlinearity g(n)

Treatment of the losses (1D)

Analytical results in 1D & 2D

Dilute ultracold atomic gases $(n = |\psi|^2)$ $i\hbar\partial_t\psi = \left[-\frac{\hbar^2}{2m}\nabla^2 + U(\mathbf{r}) + gn^{\nu}\right]\psi$

Paraxial fluids of light $(I = |E|^2)$ $i\partial_z E = \left[-\frac{\nabla^2}{2k} + U(\mathbf{r}) - \frac{\omega n_2}{c} \frac{I}{1 + I/I_{\text{sat}}} - \frac{i\alpha}{2} \right] E$

Superfluid hydrodynamics

1D mean-field regime, generalized nonlinear Schrödinger equation (Gross-Pitaevskii)

$$i\partial_t \psi = \left[-\frac{1}{2} \partial_{xx} + U(x) + g(|\psi|^2) - \frac{i\gamma}{2} \right] \psi$$
(a) $\sigma \neq 0$
(b) $\sigma/\xi_{\infty} \to 0$
(c) $\sigma/$

(1)

Madelung transformation: hydrodynamic picture $\psi = \sqrt{n} \exp\{i \int dx v\}$

$$\partial_t v = -\partial_x \left(\frac{v^2}{2} + U(x) + g(n) - \frac{1}{2} \frac{\partial_{xx} \sqrt{n}}{\sqrt{n}} \right)$$

 $\partial_t n + \partial_x (nv) = -\gamma n$

1D MODEL

$$\partial_t v = -\partial_x \left(\frac{v^2}{2} + U(x) + g(n) - \frac{1}{2} \frac{\partial_{xx} \sqrt{n}}{\sqrt{n}} \right)$$

$$\partial_t n + \partial_x (nv) = -\gamma n$$

Without losses

Stationary solutions

Far away from the obstacle:
density n → n_∞
velocity v → v_∞

1D MODEL

$$\partial_{t} v = -\partial_{x} \left(\frac{v^{2}}{2} + U(x) + g(n) - \frac{1}{2} \frac{\partial_{xx} \sqrt{n}}{\sqrt{n}} \right)$$

$$\partial_t n + \partial_x (nv) = -\gamma n$$

Without losses Stationary solutions Far away from the obstacle: • density $n \to n_{\infty}$ • velocity $v \to v_{\infty}$

1D MODEL

$$\partial_{t} v = -\partial_{x} \underbrace{\left(\frac{v^{2}}{2} + U(x) + g(n) - \frac{1}{2} \frac{\partial_{xx} \sqrt{n}}{\sqrt{n}}\right)}_{= \mathbf{C}^{\mathbf{te}} = \frac{v_{\infty}^{2}}{2} + g(n_{\infty})}$$
$$\partial_{t} n + \partial_{x} \underbrace{(nv)}_{= -\gamma n} = -\gamma n$$
$$= \mathbf{C}^{\mathbf{te}} = n_{\infty} v_{\infty}$$

Without losses Stationary solutions

Far away from the obstacle: density $n
ightarrow n_\infty$ velocity $v
ightarrow v_\infty$

Analytical results

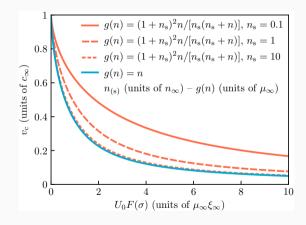
Small σ : $U(x) \to U_0 F(\sigma) \delta(x)$

$$U_0 F(\sigma) = \sqrt{2} \left[-\frac{v_c^2}{2} \left(1 - \frac{1}{n_{0,c}} \right)^2 - g(1) + \frac{g(1) - G(1) + G(n_{0,c})}{n_{0,c}} \right]^{\frac{1}{2}}, \quad \text{(6a)}$$

$$\frac{n_{0,c}}{1 - n_{0,c}} \left(g(1) - G(1) - g(n_{0,c})n_{0,c} + G(n_{0,c}) \right) = v_c^2. \quad \text{(6b)}$$

With
$$G(n) = \int g(n)dn$$
 and $n_{0,c} = n(x = 0, v_{\infty} = v_c)$.

12/29



Nonlinearity

Saturable: $g(n) = \frac{(1+n_s)^2}{n_s} \frac{n}{n+n_s}$ Cubic: g(n) = n

- Landau criterion OK for $U_0F(\sigma) \rightarrow 0$
- $v_c \searrow \operatorname{as} U_0 F(\sigma) \nearrow$
- Light SF more robust

Large σ : $U(x) = U_0 f(|x|/\sigma) \approx U_0 \left[1 + f''(0)\frac{x^2}{2\sigma^2}\right] \rightarrow \text{Multiple-scale analysis}$ with gradients of n(x) in powers of $1/\sigma \ll 1$. Hakim, Phys. Rev. E (1997)

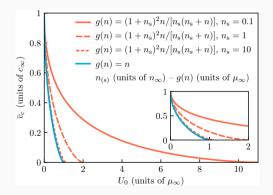
To higher order in $1/\sigma$, taking into account the curvature of the obstacle:

$$v_{c} = \bar{v}_{c} + \frac{1.466}{2^{\frac{5}{3}}} \frac{\left[U_{0}|f''(0)|\bar{n}_{0,c}\right]^{\frac{2}{3}}}{\bar{v}_{c}\left(\frac{1}{\bar{n}_{0,c}} - \bar{n}_{0,c}\right) \left[\frac{3\bar{v}_{c}^{2}}{\bar{n}_{0,c}^{3}} + g''(\bar{n}_{0,c})\bar{n}_{0,c}\right]^{\frac{1}{3}} \frac{1}{\sigma^{\frac{4}{3}}}.$$
(7)

 $\left\{ \begin{array}{l} \text{Positive correction to } \bar{v}_c \text{: } \textbf{SF favoured} \\ \sigma^{-\frac{4}{3}} \text{-dependence no matter } g(n) \text{ and } U(x) \text{: universal behaviour} \end{array} \right.$

WIDE OBSTACLE

 $ar{v}_c$ obtained at $\mathcal{O}(1/\sigma^0)$



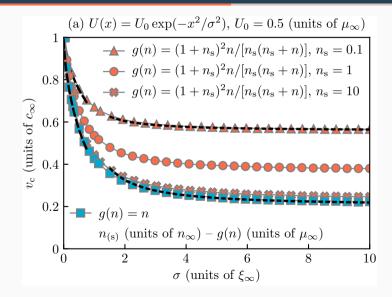
Same remarks as for the narrow obstacle

 $\bar{v}_c = 0$, $n_{0,c} = 0$ for $U_0 \ge U_{0,\max}$: fluid separated in 2 \rightarrow **no SF**

In reality: we cannot neglect the density variations and the hydraulic approximation fails \rightarrow Josephson treatment with WKB approach $v_c = A \exp\left\{-\sqrt{2}\int_{-x_{\rm cl}}^{x_{\rm cl}} dx [U(x) - \mu]^{\frac{1}{2}}\right\}.$

Numerical results

REPULSIVE OBSTACLE OF ARBITRARY WIDTH

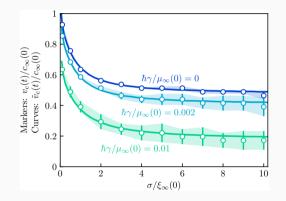


16/29

In specific systems like SF of light, **losses** are not negligible.

But if they manifest on a large time scale $1/\gamma$: As if the fluid were in an equilibrium state at each time t by **adiabatically** following the variations of its unperturbed density $n_{\infty}(t) = n_{\infty}(0) \exp(-\gamma t)$.

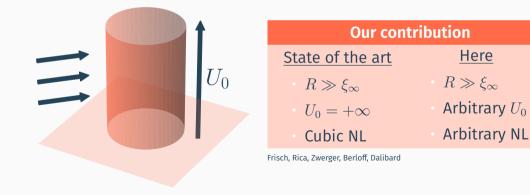
EFFECT OF LOSSES



- $\tilde{v}_c(t)$: Adiabatic-evolution approximation + Relaxation algorithm
- $v_c(t)$: Brute-force numerical integration of NLS with a moving obstacle

2D

$$\frac{v^2}{2} + U(\boldsymbol{r}) + g(n) - \frac{1}{2} \frac{\nabla^2 \sqrt{n}}{\sqrt{n}} = \text{Cte} \text{ and } \boldsymbol{\nabla} \cdot (n\boldsymbol{v}) = 0 \quad \rightarrow \quad \text{nonintegrable}$$



THE CONDITION TO OBTAIN THE CRITICAL VELOCITY

 $R \gg \xi_{\infty}$:

$$\frac{v^2}{2} + U(\mathbf{r}) + g(n) - \frac{1}{2} \frac{\nabla^2 \sqrt{n}}{\sqrt{n}} = \text{Cte}$$

$$\downarrow$$

$$g(n) = g(n(\mathbf{v})) = \text{Cte} - U(\mathbf{r}) - \frac{v^2}{2}$$

 \boldsymbol{n} only depends on the modulus of \boldsymbol{v}

 $\boldsymbol{\nabla} \cdot (n(v)\boldsymbol{v}) = 0 \quad \rightarrow \quad \text{Make that highly nonlinear equation linear}$

<u>Hodograph plane</u>: Legendre transformation $\Phi(\boldsymbol{v}) = \frac{m\boldsymbol{v}}{\hbar} \cdot \boldsymbol{r} - \phi(\boldsymbol{r})$ $nv \frac{\partial^2 \Phi}{\partial v^2} + \frac{d(nv)}{dv} \frac{\partial \Phi}{\partial v} + v \frac{d(nv)}{dv} \frac{\partial^2 \Phi}{\partial \theta^2} = 0$ (8)

Elliptic solutions: complex-valued characteristic equation of (8)

$$\frac{d(nv)}{dv} > 0$$

(9)

Condition relating to the maximum velocity v_{\max}

Solve $\boldsymbol{\nabla} \cdot (n \boldsymbol{v}) = 0$ to find v_{\max}

First approximation: $n = Cte \rightarrow$ Incompressible fluid X

<u>Solution</u>: include the **compressibility** $\chi \propto \frac{1}{c_{\infty}^2}$ with a perturbative Janzen-Rayleigh expansion of the potential velocity

$$\phi=\phi_0+\chi\phi_1+\chi^2\phi_2+...$$
 with $oldsymbol{v}=rac{\hbar}{m}oldsymbol{
abla}\phi$

CRITICAL VELOCITY FOR SUPERFLUIDITY IN 2D

2 DIFFERENT CASES

Impenetrable obstacle $U_0 \gg \mu_\infty$ The fluid goes around the obstacle

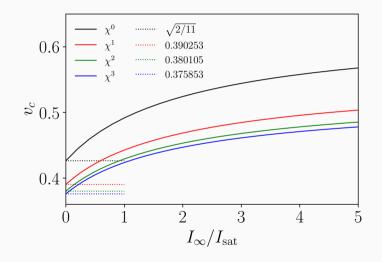
e.g. Rica, Phys. D (2001)

Penetrable obstacle

 $U_0 < \mu_\infty$ The fluid goes around or crosses the obstacle

Theory for this?

The impenetrable obstacle: $U_0 \gg \mu_\infty$



- v_c indep. of U_0
- Superfluids of light

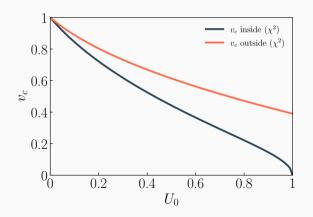
$$g(I) = \frac{\alpha I}{1 + I/I_{\text{sat}}}$$

• $I_{\infty}/I_{\rm sat} = 0$ Cubic NL \rightarrow Rica

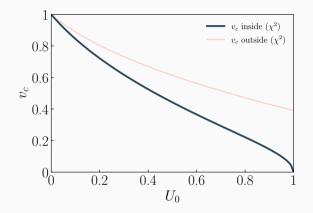
The penetrable obstacle: $U_0 < \mu_\infty$

 v_c does depend on U_0

2 possible breakdowns of SF \rightarrow 2 velocities

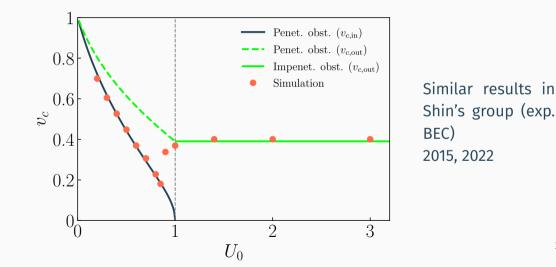


The penetrable obstacle: $U_0 < \mu_\infty$



The **real** critical velocity for SF is the **lowest** of the 2

COMPARISON ANALYTICAL/NUMERICAL RESULTS



27/29

Conclusion

1D & 2D critical velocity beyond the Landau criterion

General local nonlinearity & arbitrary obstacle
 Treatment of particle losses (1D)
 Analytical results in the mean-field regime

Method: search for the existence of stationary unperturbed solutions conditioned by the velocity

Perspectives: How do **quantum fluctuations** affect the mean-field SF transition? And what about **disordered systems** ?

THANK YOU FOR YOUR ATTENTION!