Superradiant phase transition in free-space atomic clouds

Igor Ferrier-Barbut Laboratoire Charles Fabry, Institut d'Optique

Quantum optics - atoms @ LCF

Group thematics

Light scattering in dense clouds

Dy tweezers arrays for light scattering (under construction)

Group thematics

Dy tweezers arrays for light scattering (under construction)

Collective spontaneous emission

Single atom in free space

N-atom spontaneous emission

An atomic mirror

Bettles et al., Phys. Rev. Lett. 116, 103602 (2016). Shahmoon et al., Phys. Rev. Lett. 118, 113601 (2017). Rui et al., Nature 583, 369 (2020).

N atoms

An atomic mirror

Bettles et al., Phys. Rev. Lett. 116, 103602 (2016). Shahmoon et al., Phys. Rev. Lett. 118, 113601 (2017). Rui et al., Nature 583, 369 (2020).

Subradiance as a light storage medium?

Asenjo-Garcia et al., Phys. Rev. X 7, 031024 (2017).

N atoms

0.6

0.4

0.2

1.0

0.6

0.4

0.2

CC 0.8

An atomic mirror

Bettles et al., Phys. Rev. Lett. 116, 103602 (2016). Shahmoon et al., Phys. Rev. Lett. 118, 113601 (2017). Rui et al., Nature 583, 369 (2020).

Subradiance as a light storage medium?

Asenjo-Garcia et al., Phys. Rev. X 7, 031024 (2017).

Phase transitions in driven-dissipative many-body systems.

Olmos et al., Phys Rev A 89, 023616 (2014). Parmee & Cooper, Phys Rev A 97, 053616 (2018).

N atoms

Collective spontaneous emission

This talk Small atomic clouds $L/\lambda_0 \lesssim 1$ Quantum regime: $n_{exc} \gg 1$

R. H. Dicke, Phys. Rev. 93, 99 (1954).

Gross & Haroche, Physics Reports **93**, 301 (1982). Allen & Eberly, Optical resonance and two-level atoms, Courier Corp. (1987)

R. H. Dicke, Phys. Rev. 93, 99 (1954).

 $|n\rangle \propto (\hat{S}^{+})^{n}|0\rangle \qquad \hat{S}^{+} = \sum_{i} \hat{\sigma}_{i}^{+}$ Dicke states i=1 $\Gamma_N = \Gamma_0 n(N - n + 1) \quad \text{in state } |n\rangle$ Reaches maximum for $|n\rangle = |N/2\rangle$, with $\Gamma_N \simeq N^2 \Gamma_0/4$

Gross & Haroche, *Physics Reports* **93**, 301 (1982). Allen & Eberly, Optical resonance and two-level atoms, Courier Corp. (1987)

R. H. Dicke, Phys. Rev. 93, 99 (1954).

Dicke states $|n\rangle \propto (\hat{S}^{+})^{n}|0\rangle$ $\hat{S}^{+} = \sum_{i=1}^{n} \hat{\sigma}_{i}^{+}$ $\Gamma_{N} = \Gamma_{0} n(N - n + 1)$ in state $|n\rangle$ Reaches maximum for $|n\rangle = |N/2\rangle$, with $\Gamma_{N} \simeq N^{2}\Gamma_{0}/4$

Gross & Haroche, Physics Reports **93**, 301 (1982). Allen & Eberly, Optical resonance and two-level atoms, Courier Corp. (1987)

Break Dicke symmetry: Finite-size effects, dipole-dipole interactions... Glicenstein *Optics Letters* **47**, 1542 (2022) Ferioli *et al., PRX* **11**, 021031 (2021)

See also Nice group (Kaiser Guerin)...

R. H. Dicke, Phys. Rev. 93, 99 (1954).

Dicke states $|n\rangle \propto (\hat{S}^{+})^{n}|0\rangle$ $\hat{S}^{+} = \sum_{i=1}^{n} \hat{\sigma}_{i}^{+}$ $\Gamma_{N} = \Gamma_{0} n(N - n + 1)$ in state $|n\rangle$ Reaches maximum for $|n\rangle = |N/2\rangle$, with $\Gamma_{N} \simeq N^{2}\Gamma_{0}/4$

Gross & Haroche, Physics Reports **93**, 301 (1982). Allen & Eberly, Optical resonance and two-level atoms, Courier Corp. (1987)

Break Dicke symmetry: Finite-size effects, dipole-dipole interactions... Glicenstein Optics Letters **47**, 1542 (2022) Ferioli *et al.*, *PRX* **11**, 021031 (2021)

See also Nice group (Kaiser Guerin)...

Dicke symmetric conditions + classical drive

$$\dot{\hat{\rho}} = \frac{i}{\hbar} \left[\hat{\rho}, \hat{H} \right] + \frac{\Gamma_0}{2} \sum_{i,j=1}^N 2\hat{\sigma}_j^- \hat{\rho}\hat{\sigma}_i^+ - \hat{\sigma}_i^+ \hat{\sigma}_j^- \hat{\rho} + \hat{\mu}\hat{\sigma}_i^- \hat{\rho}\hat{\sigma}_i^- \hat{\sigma}_i^- \hat$$

Classical electric dipole of a single atom: $\langle \hat{\sigma}_i^- \rangle$

N driven atoms

$$- \hat{\sigma}_i^+ \hat{\sigma}_j^- \hat{
ho}$$

$$|N\rangle = |eee \cdots e$$
$$|N-1\rangle$$
$$|2\rangle$$
$$|1\rangle$$
$$|0\rangle = |ggg \cdots g$$

N driven atoms

Dicke symmetric conditions + classical drive

$$\dot{\hat{\rho}} = \frac{i}{\hbar} \left[\hat{\rho}, \hat{H} \right] + \frac{\Gamma_0}{2} \left(2\hat{S}^- \hat{\rho}\hat{S}^+ - \hat{S}^+ \hat{S}^- \hat{\rho} - \hat{\rho} \right)$$
$$\hat{H} = \frac{\hbar\Omega_D}{2} (\hat{S}^+ + \hat{S}^-) \qquad \qquad \hat{S}^+ = \sum_{i=1}^N \hat{\sigma}_i$$

Classical electric dipole of a single atom: $\langle \hat{\sigma}_i^- \rangle$

$$\frac{d\langle \hat{S}^{-}\rangle}{dt} = \left(i\Omega_{D} + \Gamma_{0}\langle \hat{S}^{-}\rangle\right)\left(\hat{S}^{z}\rangle - \frac{\Gamma_{0}}{2}\langle \hat{S}^{-}\rangle\right)$$

Effective Rabi frequency: $\Omega_{eff} = \Omega_D - i\Gamma_0 \langle \hat{S}^- \rangle$ Screening by collective dipole

assuming
$$\langle \hat{S}^{-} \hat{S}^{z} \rangle = \langle \hat{S}^{-} \rangle \langle \hat{S}^{z} \rangle$$

$$\frac{d\langle \hat{S}^{-}\rangle}{dt} = i\Omega_{D}\langle \hat{S}^{z}\rangle + \frac{\Gamma_{0}}{2}\left[\langle \hat{S}^{z}\hat{S}^{-}\rangle + \langle \hat{S}^{-}\hat{S}^{z}\rangle\right]$$

Effective Rabi frequency: $\Omega_{\rm eff} = \Omega_D - i\Gamma_0 \langle \hat{S}^- \rangle$ Screening by collective dipole

 $\left| -\frac{\Gamma_0}{2} \langle \hat{S}^- \rangle \right|$

$$\frac{d\langle \hat{S}^{-}\rangle}{dt} = i\Omega_{D}\langle \hat{S}^{z}\rangle + \frac{\Gamma_{0}}{2}\left[\langle \hat{S}^{z}\hat{S}^{-}\rangle + \langle \hat{S}^{-}\hat{S}^{z}\rangle\right]$$

Effective Rabi frequency: $\Omega_{eff} = \Omega_D - i\Gamma_0 \langle \hat{S}^- \rangle$ Screening by collective dipole

Maximum achievable dipole: $\langle \hat{S}^- \rangle \simeq -iN/2$ Recover Rabi oscillations for $\Omega_D > N\Gamma_0/2$ Scaling with $\beta = 2\Omega_D/\Gamma_0 N$

• $\beta < 1$ Magnetised phase Collective dipole established Emission rate $\Gamma_0 \langle \hat{S}^+ \hat{S}^- \rangle \propto \Omega_D^2 / \Gamma_0$

• $\beta > 1$ Superradiant phase Superradiant collective spont. em. dominates

Emission rate $\Gamma_0 \langle \hat{S}^+ \hat{S}^- \rangle \propto N^2 \Gamma_0$

• $\beta < 1$ Magnetised phase Collective dipole established Emission rate $\Gamma_0 \langle \hat{S}^+ \hat{S}^- \rangle \propto \Omega_D^2 / \Gamma_0$

• $\beta > 1$ Superradiant phase Superradiant collective spont. em. dominates

Emission rate $\Gamma_0 \langle \hat{S}^+ \hat{S}^- \rangle \propto N^2 \Gamma_0$

Narducci et al., Phys Rev A 18, 1571–1576 (1978).

Dense clouds of 2-level atoms

 λ_0 D₂ transition, $\lambda_0 = 780$ nm, $\Gamma_0 = 2\pi \times 6$ MHz, $\tau_0 \simeq 25$ ns

$$F' = 3, m_F = \pm 3$$

 $F = 2, m_F = \pm 2$

Tight optical dipole trap (waist $1.5 - 3 \mu m$) Clouds of N = 100 - 5000 atoms $T \sim 500 \,\mu\text{K}$: no Doppler broadening, frozen distribution Optical pumping + magnetic field isolate 2 levels

Dense clouds of 2-level atoms

 D_2 transition, $\lambda_0 = 780$ nm, $\Gamma_0 = 2\pi \times 6$ MHz, $\tau_0 \simeq 25$ ns

$$F' = 3, m_F = \pm 3$$

 $F = 2, m_F = \pm 2$

Dense clouds of 2-level atoms

Observations

Single photon detection (NA=0.45) Along two directions

 $\hat{E}^+(\mathbf{r}) \propto \sum G(\mathbf{r}, \mathbf{r}_i, \omega_0) \hat{\sigma}_n^-$

 $\hat{E}^+(\mathbf{r}) \propto \sum G(\mathbf{r}, \mathbf{r}_i, \omega_0) \hat{\sigma}_n^$ n

R. H. Dicke, Phys. Rev. 93, 99 (1954).

 $\hat{E}^+(\mathbf{r}) \propto \sum G(\mathbf{r}, \mathbf{r}_i, \omega_0) \hat{\sigma}_n^$ n

Gross & Haroche, Physics Reports **93**, 301 (1982). Allen & Eberly, Optical resonance and two-level atoms, Courier Corp. (1987)

Intensity
$$I(\mathbf{r}) = \langle \hat{E}^{-}(\mathbf{r})\hat{E}^{+}(\mathbf{r})\rangle$$

 $I_{N}(\mathbf{k}) = I_{1}(\mathbf{k})\sum_{n} \left[\langle \hat{e}_{n} \rangle + \sum_{m \neq n} e^{i\mathbf{k} \cdot (\mathbf{r}_{m} - \mathbf{r}_{m})} \right]$
Dissipation Correlat
Spin wave: $\langle \hat{\sigma}_{m}^{+} \hat{\sigma}_{n}^{-} \rangle = e^{-ik_{SW} \cdot (\mathbf{r}_{m} - \mathbf{r}_{n})} \langle \hat{\sigma}_{1}^{+} \hat{\sigma}_{2}^{-} \rangle$
E.g. laser driving: $|\psi\rangle = \prod_{n} (\cos \theta |g_{n}\rangle + e^{-ik_{L}})$
 $I_{N}(\mathbf{k}) = I_{1}(\mathbf{k}) \left[\sum_{n} \langle \hat{e}_{n} \rangle + \langle \hat{\sigma}_{1}^{+} \hat{\sigma}_{2}^{-} \rangle \sum_{m,n} e^{-ik_{L}} \right]$

Gross & Haroche, Physics Reports **93**, 301 (1982). Allen & Eberly, Optical resonance and two-level atoms, Courier Corp. (1987)

 $\left\langle \hat{\sigma}_{1}^{+} \hat{\sigma}_{2}^{-} \right\rangle = \cos \theta \sin \theta$ $\left\langle \hat{\sigma}_{1}^{+} \hat{\sigma}_{2}^{-} \right\rangle = \cos \theta \sin \theta$

$$I_{N}(\boldsymbol{k}) = I_{1}(\boldsymbol{k}) \left[N\langle \hat{e} \rangle + N^{2} \langle \hat{\sigma}_{1}^{+} \hat{\sigma}_{2}^{-} \rangle \left| \frac{1}{N} \sum_{n} e^{i(\boldsymbol{k} - \boldsymbol{k}_{SW}) \cdot \boldsymbol{r}_{n}} \right|^{2} \right]$$

Gross & Haroche, Physics Reports **93**, 301 (1982). Allen & Eberly, Optical resonance and two-level atoms, Courier Corp. (1987)

$$I_N(\mathbf{k}) = I_1(\mathbf{k}) \left[N\langle \hat{e} \rangle + N^2 \langle \hat{\sigma}_1^+ \hat{\sigma}_2^- \rangle \left| \frac{1}{N} \sum_n e^{i(\mathbf{k} - \mathbf{k}_{SW}) \cdot \mathbf{r}_n} \right|^2 \right]$$

$$N \to \tilde{N} = \mu N$$

For large, dilute clouds, one has $\mu N = OD$

Gross & Haroche, *Physics Reports* **93**, 301 (1982). Allen & Eberly, Optical resonance and two-level atoms, Courier Corp. (1987)

$$I_N(\mathbf{k}) = I_1(\mathbf{k}) \left[N\langle \hat{e} \rangle + N^2 \langle \hat{\sigma}_1^+ \hat{\sigma}_2^- \rangle \left| \frac{1}{N} \sum_n e^{i(\mathbf{k} - \mathbf{k}_{SW}) \cdot \mathbf{r}_n} \right|^2 \right]$$

$$N \to \tilde{N} = \mu N$$

For large, dilute clouds, one has $\mu N = OD$

Gross & Haroche, Physics Reports 93, 301 (1982). Allen & Eberly, Optical resonance and two-level atoms, Courier Corp. (1987)

Radial rate: population

Analogy with clouds in cavity Small clouds

Collective coupling to: Set by: Cooperativity $C_N = P_{coop}/P_1$

Similarities with nanofiber-coupled atoms See e.g. arXiv: 2211.08940 (2022)

Difraction pattern

Cloud shape / structure factor

 $N \times \mu$

-3

Clouds in cavity

Cavity mode

Cavity geometry

 $N \times (g^2 / \kappa \gamma)$

from: Nature 580, 602 (2020)

Dicke case: Indistinguishable coupling to

 k_{I}

- Emission mode
- Driving mode

Driving "distinguishably"

Superradiant mode Atoms indistinguishably coupled

Classically: dipole $d_n \propto \langle \sigma_n^- \rangle$

 $\sim \Gamma_0 \frac{e^{ik_0|\boldsymbol{r}_m - \boldsymbol{r}_n|}}{4\pi k_0|\boldsymbol{r}_m - \boldsymbol{r}_n|}$

*Ignoring real part of DDI

Mean-field ansatz: $\langle \hat{\sigma}_n^- \rangle = \langle \hat{\sigma}^- \rangle e^{ik_L \cdot r_n}$

$$\sim \Gamma_0 \frac{e^{ik_0|\boldsymbol{r}_m - \boldsymbol{r}_n|}}{4\pi k_0|\boldsymbol{r}_m - \boldsymbol{r}_n|}$$

$$\frac{mn}{2} \left[\left\langle \hat{\sigma}_n^z \hat{\sigma}_m^- \right\rangle + \left\langle \hat{\sigma}_m^- \hat{\sigma}_n^z \right\rangle \right]$$

*Ignoring real part of DDI

 $\langle \hat{\sigma}_n^z \rangle = \langle \hat{\sigma}^z \rangle$

Allen & Eberly (1987)

Mean-field ansatz: $\langle \hat{\sigma}_n^- \rangle = \langle \hat{\sigma}^- \rangle e^{ik_L \cdot r_n}$

$$\sim \Gamma_0 \frac{e^{ik_0|\boldsymbol{r}_m - \boldsymbol{r}_n|}}{4\pi k_0|\boldsymbol{r}_m - \boldsymbol{r}_n|}$$

$$\frac{mn}{2} \left[\left\langle \hat{\sigma}_n^z \hat{\sigma}_m^- \right\rangle + \left\langle \hat{\sigma}_m^- \hat{\sigma}_n^z \right\rangle \right]$$

*Ignoring real part of DDI

 $\langle \hat{\sigma}_n^z \rangle = \langle \hat{\sigma}^z \rangle$

Allen & Eberly (1987)

Modification of Rabi oscillations in the population

Modification of Rabi oscillations in the population

 $\Omega_{
m eff}$ suppressed at at large N

Magnetic phase, collective dipole screening $\Omega_{\text{eff}} = \Omega_D - i\Gamma_0 \langle \hat{S}^- \rangle \rightarrow 0$

Superradiant phase for strong driving $\beta > 1$

G. Ferioli *et al.*, arXiv:2207.10361 (2022)

Phase transition

Clear scaling with $\beta = 2\Omega_D / \Gamma_0 \tilde{N}$

Two collective steady-states $\beta \ll 1$

Magnetic phase

 $\beta \ge 1$

Superradiant phase

- Dicke state with $\Gamma_{\tilde{N}} \propto \tilde{N}^2$

Ω/Γ

Two collective steady-states $\beta \ll 1$

Magnetic phase

 $\beta \ge 1$

Superradiant phase Dicke state with $\Gamma_{\tilde{N}} \propto \tilde{N}^2$

G. Ferioli *et al.*, arXiv:2207.10361 (2022)

Superradiant lasers

Two collective steady-states $\beta \ll 1$

 $\beta \ge 1$

Antoine Browaeys

Sara Pancaldi

Thank you Giovanni Ferioli

Antoine Glicenstein

Francis Robicheaux

Collab.

Two-photon correlations

$$g_2(\tau) = \frac{\langle n(t)n(t+\tau) \rangle}{\langle n(t) \rangle \langle n(t+\tau) \rangle}$$

 $\frac{\langle n(t)n(t+\tau)\rangle}{\langle n(t)\rangle\langle n(t+\tau)\rangle}$ $g_2(\tau) = -$ Two-photon correlations

Independent emitters: Siegert relation

$$g_2^{(N)}(\tau) = 1 + \left| g_1^{(1)}(\tau) \right|^2 + \frac{1}{N} g_2^{(1)}(\tau)$$

Large clouds of atoms verify Siegert

Beyond intensity: light correlations

Two-photon correlations $g_2(\tau) = \frac{\langle n(t)n(t+\tau) \rangle}{\langle n(t) \rangle \langle n(t+\tau) \rangle}$

See e.g. Ferreira et al., Am J Phys 88, 831–837 (2020). Nice group (Hugbart, Kaiser...)

General case very challenging

Superradiant ensembles

 $g_2(0, \mathbf{k}) = \frac{\sum_{k,l,m,n} e^{i\mathbf{k}\cdot(\mathbf{r}_k + \mathbf{r}_l - \mathbf{r}_m - \mathbf{r}_n)} \langle \hat{\sigma}_k^+ \hat{\sigma}_l^+ \sigma_m^- \hat{\sigma}_n^- \rangle}{\left[\sum_{m,n} e^{i\mathbf{k}\cdot(\mathbf{r}_m - \mathbf{r}_n)} \langle \sigma_m^+ \hat{\sigma}_n^- \rangle\right]^2}$

General case very challenging

Superradiant ensembles

Strong variation :

 $g_2(0) = 1$ (coherent state from large collective dipole)

$$g_2(0, \mathbf{k}) = \frac{\sum_{k,l,m,n} e^{i\mathbf{k}\cdot(\mathbf{r}_k + \mathbf{r}_l - \mathbf{r}_m - \mathbf{r}_n)} \langle \hat{\sigma}_k^+ \hat{\sigma}_l^+ \sigma_m^- \hat{\sigma}_n^- \rangle}{\left[\sum_{m,n} e^{i\mathbf{k}\cdot(\mathbf{r}_m - \mathbf{r}_n)} \langle \sigma_m^+ \hat{\sigma}_n^- \rangle\right]^2}$$

General case very challenging

Superradiant ensembles

Strong variation :

$$g_2(0, \mathbf{k}) = \frac{\sum_{k,l,m,n} e^{i\mathbf{k}\cdot(\mathbf{r}_k + \mathbf{r}_l - \mathbf{r}_m - \mathbf{r}_n)} \langle \hat{\sigma}_k^+ \hat{\sigma}_l^+ \sigma_m^- \hat{\sigma}_n^- \rangle}{\left[\sum_{m,n} e^{i\mathbf{k}\cdot(\mathbf{r}_m - \mathbf{r}_n)} \langle \sigma_m^+ \hat{\sigma}_n^- \rangle\right]^2}$$

Directional correlations

Directional correlations

Axially: violation of Siegert

- $g_2(0) < 2$
- $g_2(\tau) < 1$

Radially: independent scatterers

Growth of collective effects

Photonic correlations Work in Progress

