IETR GdR Complexe Annual Workshop

Reflectionless states in complex media

Clément Ferise, *PhD student*, IETR

Λ

IETR Acknowledgment

IETR Philipp del Hougne Matthieu Davy

Laboratoire d'Acoustique Le Mans Université - CNRS - UMR 6613

LAUM Simon Félix Vincent Pagneux

TU WIEN Stefan Rotter Michael Horodynski Matthias Kühmayer

1) General introduction

2) The reflectionless scattering operator

3) Exceptional Points in *PT-symmetric* systems

4) Enhanced broadband transmission through barriers in symmetric systems

5) Anti-reflection structures for perfect transmission through complex media

IETR Scattering matrix

CNrs

Ś

CentraleSupélec

INSA

IN Nantes ✔ Université

IETR Quasi-Normal Modes & ReflectionLess Modes

• Quasi-Normal Modes

- Non-Hermitian problem
- Very used tools to study the transmission behavior
 - Lack of information on perfect transmission

IETR Correspondence with the transmission

IETR Parity-Time Symmetry

ReflectionLess Modes : PT-symmetry

Symmetrical system \rightarrow ReflectionLess Mode with PT-symmetry

IN Nantes ✔ Université

Perfect transmission until coalescence

IETR Perturbed Fabry-Perot system

(L = 400mm; W = 22,86mm; h = 10,16mm)

C. Ferise, P. Del Hougne, S. Félix, V. Pagneux, and M. Davy, "Exceptional Points of P T-Symmetric Reflectionless States in Complex Scattering Systems," Physical Review Letters, vol. 128, p. 203904, 2022.

CNrs

ŝ

CentraleSupélec

INSA

IN Nantes ✔ Université

IETR Exceptional Point feature

Flattened quartic line shape

$$R\sim \frac{\Delta\omega^4}{\gamma^2}$$

ETR Coupled mode theory

Effective Hamiltonian:

2 channels, 2 resonances

Reflectionless operator
$$H_{RL} = \omega_0(z)\mathbb{I} + \frac{1}{2} \begin{pmatrix} -\delta \omega_0 \\ i\gamma \end{pmatrix}$$

 $\begin{array}{cc} \delta\omega_0(z) & i\gamma \\ i\gamma & \delta\omega_0(z) \end{array}$

 $\omega_0(z) \pm \delta \omega_0(z)$: resonances of the closed system γ : coupling coefficient

cnrs

Ś

CentraleSupéleo

INSA

IN Nantes ✔ Université

IETR Multichannel Disorder

2D Cavity: L = 500mm, W = 250mm and h = 8mm

Reflectionless exceptional point identify on the last eigenvalue $\tau_4(\nu, z)$ of $r^{\dagger}r$.

C. Ferise, P. Del Hougne, S. Félix, V. Pagneux, and M. Davy, "Exceptional Points of P T-Symmetric Reflectionless States in Complex Scattering Systems," Physical Review Letters, vol. 128, p. 203904, 2022.

IETR Broadband enhancement of transmission

É. Chéron, S. Félix, and V. Pagneux, "Broadband-Enhanced Transmission through Symmetric Diffusive Slabs," Phys. Rev. Lett., vol. 122, p. 125501, 2019

IETR Bimodal distribution

Distribution of the transmission eigenvalues

Decomposition of the transmission matrix into eigenchannels

$$t = \Sigma_{n=1}^{N} u_n \sqrt{\tau_n} v_n^{\dagger}$$

O.N.Dorokhov, JETP Lett, 1982.

P. A. Mello, P. Pereyra, and N. Kumar, Ann. Phys. (N.Y.), 1988.

É. Chéron, S. Félix, and V. Pagneux, "Broadband-Enhanced Transmission through Symmetric Diffusive Slabs," Phys. Rev. Lett., vol. 122, p. 125501, 2010

CNrs

ŝ

CentraleSupélec

IN Nantes ✔ Université

IETR Microwave experiment

Experimental validation

Agreement with a diffusive model for a large number of scatterers

Including scatterers can enhance transmission

M. Davy, C. Ferise, É. Chéron, S. Félix, and V. Pagneux, "Experimental evidence of enhanced broadband transmission in disordered systems with mirror symmetry," Appl. Phys. Lett., vol. 119, p. 141104, 2021.

IFETR Perfect transmission for any incident wavefront

Diffusive transport regime

- ℓ : mean free path
- *L*: length of the scattering system

Wavefront shaping

Controlling the outgoing wave $\psi_{out} = t(\omega)\psi_{in}$ by engineering the incoming wave

Enables perfect transmission by sending suitable wavefronts ($\tau = 1$)

• Only a fraction of transmission channels are open

Q: Is it possible to have a fully transmitting system for any incident wavefront ?

• Wavefront shaping techniques will not suffice

IETR Anti-reflection structure: concept

M. Horodynski, M. Kühmayer, C. Ferise, S. Rotter, and M. Davy, "Anti-reflection structure for perfect transmission through complex media," Nature, **607**, 2022.

CNrs

ŝ

INSA

IETR Theory

$$r_{L} \xrightarrow{r_{L}} t_{L} \xrightarrow{r_{R}} t_{R} \xrightarrow{r_{R}} t_{R}$$

$$r_{R} \xrightarrow{r_{R}} x_{R} \xrightarrow{r_{R}} x_{R}$$
Composite scattering matrix $S = \begin{pmatrix} r & t' \\ t & r' \end{pmatrix}$

$$t = t_{R} [1 - r'_{L}r_{R}]^{-1} t_{L}.$$

$$r = r_L + t'_L r_R [1 - r'_L r_R]^{-1} t_L.$$

Unitarity of the scattering matrices $S_x S_x^{\dagger} = 1$

Generalized critical coupling condition r = 0 $r'_L = r^{\dagger}_R$

Proof
$$r = r_L + t'_L r'^{\dagger}_L \left[1 - r'_L r'^{\dagger}_L \right]^{-1} t_L = r_L + t'_L r'^{\dagger}_L t_L^{\dagger - 1} t_L^{-1} t_L = 0.$$

- The internal structure of the disorder does not need to be known
- Only the left-sided reflection matrix r_R is relevant

CNrs

S CentraleSupéleo

INSA

IN Nantes ✔ Université

Experimental setup

Experimental setup :

2D waveguide: L = 800 mm, W = 100mm, h = 8mm

Two arrays of 7 wire-antennas

Teflon and Aluminum cylinders

 $f_0 = 7 \text{ GHz} (4 \text{ modes}) \text{ or } f_0 = 11.2 \text{ GHz} (7 \text{ modes})$

Random disorder

INTER Inverse design process

Optimization technique: iterative procedure based on the gradient of the objective $f = 1 - \frac{\text{Tr}[tt^{\dagger}]}{N}$

Calculate the gradient: generalized Wigner-Smith operator $Q_{\alpha} = -iS^{-1}\frac{\partial S}{\partial \alpha}$

Group of S. Rotter:

P. Ambichl, et al., "Focusing inside Disordered Media with the Generalized Wigner-Smith Operator," Phys. Rev. Lett., 2017.M. Horodynski, et al., "Optimal wave fields for micromanipulation in complex scattering environments," Nature Photon., 2019.

4 waveguide modes fixed disorder: 3 metallic and 17 teflon cylinders

ders

Enhancement of the energy stored

Open channel

Strong enhancement of the energy stored / dwell time

Scattering sample of perfect transmission

Strong enhancement of the average dwell time

IETR Conclusion

• ReflectionLess states can be identified from eigenvalues of the reflectionless operator

- Mirror-symmetric systems :
 - Reflectionless exceptional points
 - Broadband enhancement of the transmission through barriers

• Anti-reflection structures for perfect transmission open new ways to counteract the impact of scattering

Thank you for your attention

2-dimensional cavity (L = 500mm; W = 250mm; h = 8mm)

M. Davy, C. Ferise, É. Chéron, S. Félix, and V. Pagneux, "Experimental evidence of enhanced broadband transmission in disordered systems with mirror symmetry," Appl. Phys. Lett., vol. 119, p. 141104, 2021.

ETR Coupled Mode Theory

Effective Hamiltonian: 2 channels, 2 resonances

Gain
$$H_{RL} = H_0 + i \frac{V_0 V_0^T}{2} - i \frac{V_1 V_1^T}{2}$$
Losses

Hamiltonian of the closed system $H_0 = \omega_0(z)\mathbb{I} + \frac{1}{2} \begin{pmatrix} -\delta\omega_0(z) & 0\\ 0 & \delta\omega_0(z) \end{pmatrix}$

Left coupling vector (symmetric)
$$V_0 = \frac{\sqrt{\gamma}}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Right coupling vector (anti-symmetric) $V_1 = \frac{\sqrt{\gamma}}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

Reflectionless operator
$$H_{RL} = \omega_0(z)\mathbb{I} + \frac{1}{2} \begin{pmatrix} -\delta\omega_0(z) & i\gamma \\ i\gamma & \delta\omega_0(z) \end{pmatrix}$$

Eigenvalues

cnrs

ŝ

CentraleSupélec

INSA

IN Nantes ✔ Université

IETR Simulation

