Multifractal Properties 0f The CFS Peal
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3D Anderson Metal-Insulator Transition (infinite-size disordered systems)

~2
Hamiltonian H = 2]? | {V(r)] II){(?%?I(‘E)ESI Optical laser Speckle, Uncorrelated box distribution, Continuous or lattice model, etc.
T

Eigenstates are extended

Eigenstates are localized

Critical State

Diosrder-induced MIT

Disorder Strength W
(Fixed energy E)

The system 1s a metal W+ The system 1s an insulator
Mobility Edge



Eigenfunction Fluctuations and how they fill real space

* Metallic Phase: * Mobility Edge: * Insulator:
Extended eigenfunctions Fractal eigenfunctions Localized eigenfunctions

Strong fluctuations:
o _d Regions where the eigenfunction is
‘wn‘ ~ L exceptionally large, regions where it
is exceptionally small

Yn]? ~ €T ITTTOUE

Rodriguez et. al. PRB 84, 134209 (2011) How to quantify the intensity fluctuations?



Multifractal Dimensions

Box Counting Method borrowed from Fractal Analysis

N = (L/ a)d boxes B; Partition the system in boxes

Coarse-grain the wave function

E 1 ‘2 intensity on a scale a < L.
Bin intensities in each box.

Defines a probability measure.

g
iEBj

Av-GIPR R, = p? ~ N~ 10g
J

Multifractal dimension
Metal: D, =d

Insulator: D, =0

Critical state: Non trivial 0 < D, < d

Multifractal wave functions

Rodriguez et. al. PRB 84, 134209 (2011)



CFKS peak in momentum space reveals signatures of multifractality in space

Initial atomic
cloud with a kick

(1) Start with an
initial plane wave

¥(t =0)) = |ko)

v

Time evolution 1n
random medium

(2) Propagate with the
) Hamiltonian H )

(1)) = e~ /M k)

N\

In presence of V(r), initial wave spreads over a
broad range of energies E (ctf spectral function).
As a result, properties depending sharply on E
are blurred by the energy spread. Need for
energy-filtering.

CFS Contrast A =

Peak Height - Background

Background

Experimentally
feasible

(3) Filter around
energy E

™

Ye(t) = Fo (B)[(1))

“Time-of-flight”
measurement

Disorder-averaged
momentum distribution
at fixed energy

(4) Compute the
momentum density

(5) Repeat over many
> disorder configurations

(k|Yp(t))]?

CBS and CFS peaks
embodies signatures
of localisation transition

S. Ghosh et al., PRL 115, 200602 (2015)
S. Ghosh et al., PRA 95,041602 (2017)



CFS contrast A

CFS is a critical quantity!
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CFS Contrast CV to a step-function as t increases:
It 1s a Smoking Gun of 3D AT and a critical quantity!

* Jumps from O to 1 across the transition.

* Crossing locates ME.

* CFS takes on an intermediate value at critical point!

S. Ghosh et al., Phys. Rev. A 95, 041602(R) (2017).



Bogomolny-Giraud Conjecture (2010) & CFS Critical Contrast

_ 1 Disorder-averaged — 1 —i(En,—FEn)t
o(F) = ~Nd Z o(F — Ey) DoS per unit volume Kg(t) = N Z e i Spectral Form Factor
n n,m o E,+ E,,

2

77 = 2w N d p( F ) Heisenberg Time (time scale associated to the mean-level spacing)

—~ 5 —2
Spectral Rigidity 22 — N 2 _ N Level number fluctuations in an energy interval

Spectral C ibility Yo ~ kN for N > 1
pectral Lompressibiity -~ ~ K O > Bogomolny-Giraud

i = 2rh N p(E) Kg(t — 0%) k=1—-D/d
hHi D, = D; Information
q— : :

Kg (t — O+) = lim Kg (t) dimension

(t,N)—oc
t/TH—>O



CFS contrast

We Infer

Cte AC — K

. To be compared to the

A(t) = 2mh Nd ﬁ(E) KE(t) At critical point: A(t) — Ac —
0-00 $ W=16.53 E=1.0  © L=30
o L=20
0.50 116

é i

N 040¢t

0.30

0.20

Numerically A, ~ 0.342 -

- 0.01 =

0.03

S. Ghosh et al., PRA 95, 041602 (2017)

numerically computed
critical CFS contrast

Ao~ 0.342 £ 0.01

To be compared to [D; = 1.958
Rodriguez et al., PRB 84, 134209 (2001)



But what is the interplay between time and system size?

0[Critical CFS contrastAc | A(4) = A, = Cto

0.4| A=A, /\
R A

03] # A(t) =2rh N9 p(E) Kg(t) Kg(t —07")

[ ¢

0.2

0.1 Independent of time at critical point (after a while) ... but what time?

0.0
0 2000 4000 6000 8000
Time ¢

. lim lim (- - - im Ulm (- - - The two limits
KEY POINT t— 00 N—>o<>( ) # N — 00 t—>oo( ) DO NOT commute!

The only relevant time scale is the one associated

At the critical point, no spatial scale = to the system size N. It is the Heisenberg time ThH

There are thus two regimes to understand: { << TH T >> TH

Infinite size Iimit Infinite time limit



Critical models with multifractal eigenstates used here:

TN

 Kicked Systems — Floquet Quantum Maps: [[ — ¢ '¥p o—iV(r) Uniformly distributed over 27T
. V2 .
3D Random Kicked Rotor (3DKR) Vir) = Kv(x)v(y)v(z) v(x) = Ve (2 cosx + sin 2x)

Dy =1.912 Dy = 1.165

Ruijsenaars-Schneider (RS) Vir)=ax x€|—m, 7] [) q (a)
\_/ These parameters
control multifractality
* Time-independent Hamiltonian: G(w,0) Gaussian distribution of mean y and dispersion ¢

Power-law Random Banded Matrices ,
sin“(7w|n — m|/N)

(b7 /N )2

D,(E,Db)

—2

Diagonal entries are i.i.d. with distribution G(0, 1) o, =1

Real and imaginary parts of the off-diagonal entries are 1.1.d. with G(0, Omn)



Momentum Distribution - Technicalities

n(k,t) = — [(k|U(t)|kg)|? U(t) = e """ or a quantum map

(or Floguet eigenstates
and quasi-energies)

Ulppn) = 6iEn|¢n>

» Eigenfunction/Eigenenergy decomposition: H|¢,) = E,|d,)

n(k, 1) Ndz ~HEn=Em)t ¢y, (k) @5, (Ko ) @ (ko) 077, (K)

* Momentum Distribution at fixed energy E:

n(k,t) = / n(k, t: E) dE

n(k,t; E) Ndz BBt ()57 (o) (ko) 05, (k) OB



Interference-Kree Classical (Diffusive) Background and Relation to Spectral Function

Ak, F) dZ(S (E — E,) |on(k)[? Spectral Function

Sum Rules: W ZA(k, E) = p(E) /A(k, E)dE =1

Ak, E) = Proba blhty density to have
’ energy E at momentum K

Average momentum Ak, F)
(E)

distribution at E / ) /

Exact result
(Ergodicity)

Absence of correlations between norm and
— ~ nplk: ) ~ ol B
phase of the eigenstates in direct space A(k’ E) P (E ) — | 'D ( ) ) P ( )

Numerically-approved: Works well
for the models explored here!




Fourier Transform

On(k) = Pn(r)




Figure 3. CFS contrast peak in the long-time limit (f 2» vy ) and its scaling (56) with system size N, (a) PRBM model with
different & and at E = 0. (b) RS model averaged over £ with different a. (¢) 3DKR model with K = 1.568. Symbols are
numerical data for different system sizes. Dashed black lines are Eq. (56), i.e. a single parameter fit y = aN ~“? with a the fit

parameter and [D; independently determined from scaling of the moments (1) in direct space (for PRBM and RS) or taken
from [68] (for 3DKR). See Appendix B for numerical procedure.

References:
M. Martinez et al., PRR 3, 032044 (2021)

M. Martinez et al., scipost 202210 _00061v1l
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CFS Contrast in the Large Size Limit at Finite Time << T

CFS arises from the non-ergodicity of the eigenstates and 1t no longer depends on N

Using Fourier transform from k-space to direct space, ¢, (k) = Z dn(r) e T and some

standard term-cancellation approximations, one can show that:

An(ko,t; E) = Kn(t; E) = Preturn(t; E)

Spectral Form Factor Return Probability

b, + B,

Provura(tE) = 3 e iBaBlt|g, (1) 2|, (v)[2 6(E )

n’m,r \/

4 eigenfunctions : It will encode D2



Kn(t; E) — Kk Spectral Compressibility

K=1— D1 / d (B-G conjecture)

Preturn (t; E) ™ t_Dz/d




N =16384
Ndis — 1125

Power-Law Random Banded Matrix Model

Ruijsenaars-Schneider Model

(a) | PRBM —
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Conclusion & Perspectives

We have studied the CFS peak in critical disordered systems with multifractal eigenstates and showed
that the CFS peak height time and system size dependence give access to fractal dimensions D and D».

We have demonstrated that there exist two distinct dynamical regimes:

e Whent < 7 (infinite system size limit)
- CFS arises from the nonergodicity of the eigenstates.

- The CFS peak height reaches the compressibility K = 1 — D;/d with a temporal power-law related to Ds.
- We also provide a full description of the shape of the CFS peak.

e When ¢ > 77 (infinite time limit)

- CFS 1s caused by the system boundaries.

- The height of CFS peak goes to 1 with a finite-size correction related to multifractal dimension Da,
- We also provide an analysis of the CFS peak shape.

Question: Can we extract other fractal dimension from the dynamics of the peak shape?



