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Eigenstates are extended

Mobility Edge

3D Anderson Metal-Insulator Transition (infinite-size disordered systems)

Eigenstates are localized

The system is an insulator

Random 
potentialHamiltonian

1

⇠(E)/L ⇠ |E � Ec|�⌫
/L ⇠ (|E � Ec|L1/⌫

)
�⌫

(1)

Ĥ =
p̂
2

2m
+ V (r) (2)

Here we assume an explicit form of the universal function.

The scaling parameter near the critical point: ⇠(E)/L ⇠ |E � Ec|�⌫
/L

Optical laser Speckle, Uncorrelated box distribution, Continuous or lattice model, etc.

The system is a metal

Critical State

⇠ ⇠ (W � W ⇤)�⌫

D ⇠ (W ⇤ � W )s



Eigenfunction Fluctuations and how they fill real space

• Metallic Phase:
Extended eigenfunctions

Rodriguez et. al. PRB 84, 134209 (2011)

• Mobility Edge:
Fractal eigenfunctions
Strong fluctuations: 
Regions where the eigenfunction is 
exceptionally large, regions where it 
is exceptionally small

| n|2 ⇠ L�d

How to quantify the intensity fluctuations?

• Insulator:
Localized eigenfunctions

| n|2 ⇠ ⇠�de�|~r�~r0|/⇠



Multifractal Dimensions

Rodriguez et. al. PRB 84, 134209 (2011)

a

L N = (L/a)d boxes Bj

µj =
X

i2Bj

| i|2

Multifractal dimension

Box Counting Method borrowed from Fractal Analysis

Coarse-grain the wave function 
intensity on a scale a < L. 
Bin intensities in each box. 
Defines a probability measure.

Partition the system in boxes

Insulator: Dq = 0

Metal: Dq = d

Critical state: Non trivial 0  Dq  d

Av-GIPR Rq =
X

j

µq
j ⇠ N�(q�1)Dq

Multifractal wave functions 
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potential. By scrutinizing the dynamics of its angular
width, �✓CBS, in combination with a numerical filter
that provides a high energy resolution, we demonstrate
that �✓CBS displays criticality and can thus be used to
characterize the Anderson transition. By developing an
accurate finite-time scaling analysis of the data, we find
that the CBS width permits to verify the one-parameter
scaling theory of localization [19], we locate precisely the
mobility edge and measure the critical exponent of the
transition. We determine these parameters for a speckle
potential, and find a good agreement with the predictions
of the transfer-matrix method.

As was shown in [20], CBS of cold atoms can be ob-
served by tracing the evolution a quasi-plane matter wave
in momentum space, a proposal recently realized exper-
imentally [13]. Let us thus consider a matter wave ini-
tially prepared in the plane-wave state | (t = 0)i = |k0i,
and subjected to a 3D random potential V (r). Follow-
ing experiments, we choose V (r) to have the statistical
properties of a blue-detuned speckle pattern. It is cus-
tomary to shift all energies by the average value V0 > 0
of the speckle potential, leading to the on-site distri-
bution P (V ) = exp[(V + V0)/V0]⇥(V + V0)/V0 (⇥ is
the Heaviside function), and the two-point correlation
function V (r)V (r0) = V

2
0 [sin(|r � r0|/⇣)/(|r � r0|/⇣)]2,

where ⇣ is the correlation length. We propagate the ini-
tial state |k0i in time, using the modified evolution op-
erator exp[�(Ĥ � E)2/(2�2)] exp(�iĤt/~), where Ĥ =
p̂2

/(2m)+V (r). In this expression, the second exponen-
tial is the usual evolution operator, while the first expo-
nential is a Gaussian filter, which allows us to restrict
the evolution to a narrow energy range (±�) centered
at a value E that we wish to tune around the mobility
edge Ec. This filter is crucial to achieve a good energy
resolution of the transition, which otherwise would be
smoothed by the natural energy distribution of the initial
plane wave in presence of the disordered potential [9, 21].
In the simulations, � is chosen as small as possible, with
nevertheless the limitation that a su�ciently large num-
ber of eigenstates participate to the propagation. We use
V0 = 1,� = 0.02, k0 = 0.6 and discretize the Hamiltonian
Ĥ on a 3D grid of total volume (60 ⇥ ⇡⇣)3 (throughout
this Letter, lengths, momenta, energies and times are
given in units of ⇣, ⇣�1, ~2/(m⇣2) and m⇣

2
/~, respec-

tively). Each cell of size ⇡⇣ is divided into 2 steps in all
three directions [22], and we use periodic boundary con-
ditions. After the time evolution, the final wave function
| (t)i is Fourier transformed and squared to yield the
momentum distribution n(k, t) = |hk| (t)i|2. The pro-
cedure is repeated for 6⇥103 configurations of V (r), and
the results are averaged to yield n(k, t) = |hk | (t)i |2.
We show in Fig. 1 the numerical distribution n(k, t)
obtained at long times for an energy E = �0.4 which
lies in the metallic regime E > Ec. n(k, t) clearly dis-
plays a narrow interference peak of angular width �✓CBS

and centered at k = �k0 (in red in Fig. 1). This CBS
peak sits on the top of a time-independent isotropic back-
ground (in blue in Fig. 1), which in three dimensions has

the shape of a spherical shell as a result elastic multiple
scattering o↵ the random potential [20].
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FIG. 2. (color online) Dynamics of the CBS peak across the
Anderson transition. Left panel: angular width �✓CBS versus
time, in the metallic regime E = �0.4 > Ec (green points),
at the mobility edge E = Ec ' �0.48 (red points), and in
the insulating regime E = �0.56 < Ec (blue points). Right
panels: cut along kx of the normalized CBS profile at three
di↵erent energies. For each energy, profiles at three di↵erent
times t = 2000, 4000 and 8000 are displayed, shifted with
respect to each other for clarity. The CBS width rapidly sat-
urates in the insulating regime, while it shrinks in time in the
metallic and critical regimes. We find an excellent agreement
with the temporal dependences predicted by Eq. (1).

We now wish to study the time dependence of the CBS
angular width, �✓CBS. Qualitatively, CBS is an inter-
ference e↵ect between two waves that propagate along
an identical multiple scattering sequence r1 . . . rN but in
opposite directions [23]. The interference term between
these paths is proportional to cos[(k0 + k) · (rN � r1)].
Therefore, denoting by �✓ the angle (assumed small) be-
tween k and �k0, we infer that an interference is visible
on average provided k0�✓�r(t) ⌧ 1, where �r(t) =
(|rN (t)� r1|2)1/2. We thus estimate the angular width
of the CBS at a given time t to be �✓CBS ⇠ 1/[k0�r(t)].
The average distance between the first and last points of
the scattering sequence depends on the nature of trans-
port in the system. In the metallic regime E > Ec,
�r(t) /

p
D(E)t with D(E) the di↵usion coe�cient at

energy E, while�r(t) / t
1/3 at the mobility edge E = Ec

[24] and �r(t) / ⇠(E), the localization length, in the in-
sulating regime E < Ec. We thus have:

k0�✓CBS ⇠

8
><

>:

1/
p
D(E)t E > Ec

1/t1/3 E = Ec

1/⇠(E) E < Ec.

(1)

The time dependence of �✓CBS is thus qualitatively dif-
ferent in the three regimes of transport. In particular, a

(1) Start with an 
initial plane wave

(2) Propagate with the 
Hamiltonian H

(3) Filter around 
energy E

(4) Compute the 
momentum density

  CFS peak in momentum space reveals signatures of multifractality in space

“Time-of-flight” 
  measurement

Initial atomic  
cloud with a kick

Time evolution in 
random medium

Experimentally 
feasible

| (t)i = e�iĤt/~|k0i | E(t)i = F̂�(E)| (t)i

F̂�(E) = e�
(E�Ĥ)2

2�2

(5) Repeat over many 
disorder configurations

In presence of V(r), initial wave spreads over a 
broad range of energies E (cf spectral function). 
As a result, properties depending sharply on E 
are blurred by the energy spread. Need for 
energy-filtering.

|hk| E(t)i|2

nE(k, t) = |hk| E(t)i|2

Disorder-averaged 
momentum distribution 
at fixed energy

Diffusive  
BackgroundCFS Contrast ! = 

Peak Height - Background

Background

CBS and CFS peaks 
embodies signatures  

of localisation transition

S. Ghosh et al., PRL 115, 200602 (2015) 
S. Ghosh et al., PRA 95, 041602 (2017) 
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FIG. 2. (not the latest one) Scaled g and the correlation
function for the blue detuned speckle disorder.

calized regime. In practice one can not access beyond cer-
tain energy range. This restricts the energy range (here
[�0.56,�0.40]) of the transition. As a consequence, one
requires a high energy resolution in order to distinguish
the di↵erent energy points. Here the whole tuning range
is [�0.56,�0.40] with filtering resolution � = 0.02. A
larger � will lead us to a smaller number of energy points
inside the energy range. An e�cient characterization of
the transition thus necessarily demands a small �. How-
ever experimentally a small � may not be easy to realise.
Thus we turn into the red detune speckle potential where
hopefully these problem will be solved.
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FIG. 3. Anderson Gaussian: We find the mobility edge using
using transfer matrix result (shown in the upper panel). The
extracted mobility edge Wc/J = 6.112±0.009 and ⌫ = 1.63±
0.03 for fixed energy E/J = 1. The lower panel shows the
critical (W/J = 6.12)of ⇤. At long time the contrast becomes
constant: ⇤(t) = ⇤c = 0.330± 0.015(0.016).
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FIG. 4. Gaussian Gaussian: We find the mobility edge using
using transfer matrix result (shown in the upper panel). The
extracted mobility edge Wc/E⇣ = 5.018 ± 0.010 and ⌫ =
1.63±0.03 at a fixed energy E/E⇣ = 0.125 and discretization
Nd = 4. The lower panel shows the critical (W/E⇣ = 5.01)of
⇤. At long time the contrast becomes constant: ⇤(t) = ⇤c =
0.330± 0.011(0.024).

III. TABLE FOR COMPARISON

We here summarise our results:

!c ≈ 0.34

Critical CFS contrast Λc

Jumps from 0 to 1 across the transition. 

Crossing locates ME. 

CFS takes on an intermediate value at critical point! 

S. Ghosh et al., Phys. Rev. A 95, 041602(R) (2017).

CFS Contrast CV to a step-function as t increases:  
It is a Smoking Gun of 3D AT and a critical quantity!

No CFS CFS

t
t

CFS is a critical quantity!
W*=16.5

Metal

Insulator



Bogomolny-Giraud Conjecture (2010) & CFS Critical Contrast

Disorder-averaged  
DoS per unit volume 

 = 1�D1/d
Bogomolny-Giraud

KE(t) =
1

Nd

X

n,m

e�i(En�Em)t
���
E

E =
En + Em

2

Spectral Form Factor

 = 2⇡~Nd ⇢(E)KE(t ! 0+)

Spectral Rigidity

Heisenberg Time (time scale associated to the mean-level spacing)

lim
q!1

Dq = D1 Information  
dimension

⌧H = 2⇡Nd ⇢(E)

⇢(E) =
1

Nd

X

n

�(E � En)

⌃2 = N2 �N
2

Level number fluctuations in an energy interval 

⌃2 ⇠ N for N � 1Spectral Compressibility

KE(t ! 0+) = lim
(t,N)!1
t/⌧H!0

KE(t)
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To be compared to the  
numerically computed  
critical CFS contrast 
⇤c ⇡ 0.342± 0.01

⌃2 ⇠ N̄
N̄ � 1

CFS contrast

⇤(t) = 2⇡~Nd ⇢(E)KE(t) ⇤(t) = ⇤c = CteAt critical point: ⇤c = 
We infer

D1 = 1.958
Rodriguez et al., PRB 84, 134209 (2001)

Numerically To be compared to ⇤c ⇡ 0.342± 0.01 ) D1 ⇡ 1.974± 0.03
S. Ghosh et al., PRA 95, 041602 (2017) 



But what is the interplay between time and system size?

lim
t!1

lim
N!1

(· · ·) 6= lim
N!1

lim
t!1

(· · ·) The two limits  
DO NOT commute!KEY POINT:

There are thus two regimes to understand:   

At the critical point, no spatial scale ⟹ The only relevant time scale is the one associated  
to the system size N. It is the Heisenberg time #H 

t ⌧ ⌧H t � ⌧H
Infinite size limit Infinite time limit
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FIG. 2. (not the latest one) Scaled g and the correlation
function for the blue detuned speckle disorder.

calized regime. In practice one can not access beyond cer-
tain energy range. This restricts the energy range (here
[�0.56,�0.40]) of the transition. As a consequence, one
requires a high energy resolution in order to distinguish
the di↵erent energy points. Here the whole tuning range
is [�0.56,�0.40] with filtering resolution � = 0.02. A
larger � will lead us to a smaller number of energy points
inside the energy range. An e�cient characterization of
the transition thus necessarily demands a small �. How-
ever experimentally a small � may not be easy to realise.
Thus we turn into the red detune speckle potential where
hopefully these problem will be solved.
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FIG. 3. Anderson Gaussian: We find the mobility edge using
using transfer matrix result (shown in the upper panel). The
extracted mobility edge Wc/J = 6.112±0.009 and ⌫ = 1.63±
0.03 for fixed energy E/J = 1. The lower panel shows the
critical (W/J = 6.12)of ⇤. At long time the contrast becomes
constant: ⇤(t) = ⇤c = 0.330± 0.015(0.016).
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FIG. 4. Gaussian Gaussian: We find the mobility edge using
using transfer matrix result (shown in the upper panel). The
extracted mobility edge Wc/E⇣ = 5.018 ± 0.010 and ⌫ =
1.63±0.03 at a fixed energy E/E⇣ = 0.125 and discretization
Nd = 4. The lower panel shows the critical (W/E⇣ = 5.01)of
⇤. At long time the contrast becomes constant: ⇤(t) = ⇤c =
0.330± 0.011(0.024).

III. TABLE FOR COMPARISON

We here summarise our results:

Critical CFS contrast Λc

Independent of time at critical point (after a while) … but what time?

⇤(t) = 2⇡~Nd ⇢(E)KE(t) KE(t ! 0+)

⇤(t) = ⇤c = Cte



•  Kicked Systems ⟶ Floquet Quantum Maps:

Power-law Random Banded Matrices

Critical models with multifractal eigenstates used here:

Exhibits an Anderson transition at K = 1.58

Multifractal eigenstates, flat DoS  
Dq indepepent on quasi-energy

Multifractal eigenstates  
Dq and DoS depend on E

Flat DoS

Ruijsenaars-Schneider (RS)

3D Random Kicked Rotor (3DKR)

U = e�i'p e�iV (r)

V (r) = K v(x) v(y) v(z) v(x) =

p
2

4
(2 cosx+ sin 2x)

Uniformly distributed over 2%

V (r) = a x x 2 [�⇡,⇡]

•  Time-independent Hamiltonian: G(µ,�)

Diagonal entries are i.i.d. with distribution G(0, 1)
Real and imaginary parts of the off-diagonal entries are i.i.d. with G(0, &mn)

Gaussian distribution of mean ' and dispersion & 

��2
mn = 1 +

sin2(⇡|n�m|/N)

(b⇡/N)2

Dq(E, b)

Dq(a)

D1 = 1.912 D2 = 1.165

These parameters 
control multifractality



n(k, t) =

Z
n(k, t;E) dE

n(k, t;E) =
1

Nd

X

n,m

e�i(En�Em)t �n(k)�⇤
n(k0)�m(k0)�⇤

m(k) �(E � En + Em

2
)

Momentum Distribution - Technicalities

H|�ni = En|�ni

• Momentum Distribution at fixed energy E:

n(k, t) =
1

Nd
|hk|U(t)|k0i|2

• Eigenfunction/Eigenenergy decomposition:

n(k, t) =
1

Nd

X

n,m

e�i(En�Em)t �n(k)�⇤
n(k0)�m(k0)�⇤

m(k)

U(t) = e�iHt or a quantum map

(or Floquet eigenstates  
and quasi-energies)

U |�ni = eiEn |�ni



Average momentum 
distribution at E

Probability density to have 
energy E at momentum k

Exact result
(Ergodicity)

Interference-Free Classical (Diffusive) Background and Relation to Spectral Function

Sum Rules:
Z

A(k, E) dE = 1
1

Nd

X

k

A(k, E) = ⇢(E)

A(k, E) ⌘

Spectral Function

nD(k) =

Z
A(k, E)

⇢(E)
A(k0, E) dE nD(k;E) =

A(k, E)

⇢(E)
A(k0, E)

Absence of correlations between norm and 
phase of the eigenstates in direct space ⟹ A(k, E) ⇡ ⇢(E) ⟹ nD(k;E) ⇡ ⇢(E)

Numerically-approved: Works well  
for the models explored here!

A(k, E) =
1

Nd

X

n

�(E � En) |�n(k)|2

⌘ A(k, E)

⇢(E)



CFS Contrast in the Long-Time Limit at Finite Size

⇤N (k, t;E) =
n(k, t;E)� nD(k;E)

nD(k;E)
=

n(k, t;E)

⇢(E)
� 1

n(k, t;E) =
1

Nd

X

n

|�n(k)|2|�n(k0)|2 �(E � En) +
X

n 6=m

e�i(En�Em)t �n(k)�⇤
n(k0)�m(k0)�⇤

m(k)�(E � En + Em

2
)

t ! 1

⇤N (k0, t = 1;E) =
1

Nd⇢(E)

X

n

|�n(k0)|4 �(E � En)� 1

⇤N (k, t = 1;E)

Fourier Transform

⇤N (k0, t = 1;E) = 1�
P

r |�n(r)|4 �(E � En)P
n �(E � En)

IPR ⇠ N�D2

t � ⌧H

�n(k) ! �n(r)
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CFS Contrast in the Large Size Limit at Finite Time

CFS arises from the non-ergodicity of the eigenstates and it no longer depends on N

Using Fourier transform from k-space to direct space, �n(k) =
X

r

�n(r) e
�ik·r

⇤N (k0, t;E) = KN (t;E)� Preturn(t;E)

, and some

standard term-cancellation approximations, one can show that: 

Return ProbabilitySpectral Form Factor

Preturn(t;E) =
X

n,m,r

e�i(En�Em)t|�n(r)|2|�m(r)|2 �(E � En + Em

2
)

t ⌧ ⌧H

4 eigenfunctions : It will encode D2



KN (t;E) !  Spectral Compressibility

 = 1�D1/d (B-G conjecture)

⇤N=1(k, t;E)

Preturn(t;E)⇠ t�D2/d



Power-Law Random Banded Matrix Model Ruijsenaars-Schneider Model

3D Random Kicked Rotor Model

N = 16384

Ndis = 1125

N = 131072

Ndis = 3600



• When                  (infinite system size limit)
- CFS arises from the nonergodicity of the eigenstates.
- The CFS peak height reaches the compressibility ( = 1 − D1/d with a temporal power-law related to D2.
- We also provide a full description of the shape of the CFS peak.

Conclusion & Perspectives

Question: Can we extract other fractal dimension from the dynamics of the peak shape? 

We have studied the CFS peak in critical disordered systems with multifractal eigenstates and showed 
that the CFS peak height time and system size dependence give access to fractal dimensions D1 and D2. 

• When                  (infinite time limit) 
- CFS is caused by the system boundaries. 
- The height of CFS peak goes to 1 with a finite-size correction related to multifractal dimension D2, 
- We also provide an analysis of the CFS peak shape.

We have demonstrated that there exist two distinct dynamical regimes:

t � ⌧H

t ⌧ ⌧H


