

Maxime Martinez, Gabriel Lemarié, Bertrand Georgeot, Christian Miniatura and Olivier Giraud

IRL 3654 MajuLab CNRS-UCA-SU-NUS-NTU International Joint Research Unit Singapore

UNIVERSITÉ Côte d'azur

GdR Complexe Annual Workshop – Paris, December 07-09, 2022

3D Anderson Metal-Insulator Transition (infinite-size disordered systems)

Hamiltonian $\hat{H} = \frac{\hat{p}^2}{2m} + V(\mathbf{r})$ Random potential

Eigenstates are extended

Critical State

The system is a **metal**

Optical laser Speckle, Uncorrelated box distribution, Continuous or lattice model, etc.

Mobility Edge

Eigenfunction Fluctuations and how they fill real space

• Metallic Phase: **Extended eigenfunctions**

 $|\psi_n|^2 \sim L^{-d}$

• Mobility Edge: **Fractal eigenfunctions**

Strong fluctuations: Regions where the eigenfunction is exceptionally large, regions where it is exceptionally small

Rodriguez et. al. PRB 84, 134209 (2011)

• Insulator: Localized eigenfunctions

$$|\psi_n|^2 \sim \xi^{-d} e^{-|\vec{r} - \vec{r}_0|/\xi}$$

Rodriguez et. al. PRB **84**, 134209 (2011)

Box Counting Method borrowed from Fractal Analysis

 $N = (L/a)^d$ boxes B_i Partition the system in boxes

Coarse-grain the wave function intensity on a scale a < L. **Bin intensities in each box. Defines a probability measure.**

Critical state: Non trivial $0 \leq D_a \leq d$ Multifractal wave functions

CFS peak in momentum space reveals signatures of multifractality in space

 $\frac{1}{1} \frac{1}{1} \frac{1}$

CFS is a critical quantity!

<u>i ime</u>

Bogomolny-Giraud Conjecture (2010) & CFS Critical Contrast

$$\overline{\rho}(E) = \frac{1}{N^d} \overline{\sum_n \delta(E - E_n)}$$

 $\tau_H = 2\pi N^d \,\overline{\rho}(E)$

Heisenberg Time (time scale associated to the mean-level spacing)

Spectral Rigidity
$$\Sigma_2 = \overline{N^2} - \overline{N}^2$$
 Level n
Spectral Compressibility $\Sigma_2 \sim \kappa \overline{N}$ for \overline{N}

Disorder-averaged

DoS per unit volume

$$\kappa = 2\pi\hbar N^d \,\overline{\rho}(E) \, K_E(t \to 0^+)$$

 $K_E(t \to 0^+) = \lim_{\substack{(t,N) \to \infty \\ t/\tau_H \to 0}} K_E(t)$

$$K_E(t) = \frac{1}{N^d} \left[\sum_{n,m} e^{-i(E_n - E_m)t} \right]_E \quad \text{Spectral Form Fact}$$
$$E = \frac{E_n + E_m}{2}$$

umber fluctuations in an energy interval

$$V \gg 1$$

Bogomolny-Giraud
 $\kappa = 1 - D_1/d$
 $\lim_{q \to 1} D_q = D_1$ Information
dimension

CFS contrast

$$\Lambda(t) = 2\pi\hbar N^d \,\overline{\rho}(E) \, K_E(t)$$

At critical poin

Numerically $\Lambda_c \approx 0.342 \pm 0.01 \Rightarrow D_1 \approx 1.974 \pm 0.03$ S. Ghosh et al., PRA 95, 041602 (2017) We infer $\Lambda_{c}=\kappa$

nt:
$$\Lambda(t) = \Lambda_c = \operatorname{Cte}$$

To be compared to the numerically computed critical CFS contrast $\Lambda_c \approx 0.342 \pm 0.01$

To be compared to $D_1 = 1.958$

Rodriguez *et al.*, PRB **84**, 134209 (2001)

But what is the interplay between time and system size?

There are thus two regimes to understand:

The only relevant time scale is the one associated to the system size N. It is the Heisenberg time $\tau_{\rm H}$

 $t \ll au_H$

Infinite size limit

Infinite time limit

Critical models with multifractal eigenstates used here:

• Kicked Systems — Floquet Quantum Maps:

3D Random Kicked Rotor (3DKR) **Exhibits an Anderson transition at K = 1.58** Flat DoS

Ruijsenaars-Schneider (RS) Multifractal eigenstates, flat DoS **D**_q indepepent on quasi-energy

• Time-independent Hamiltonian:

Power-law Random Banded Matrices

Diagonal entries are i.i.d. with distribution G(0, 1)Real and imaginary parts of the off-diagonal entries are i.i.d. with $G(0, \sigma_{mn})$

Multifractal eigenstates D_q and DoS depend on E

 $G(\mu, \sigma)$ Gaussian distribution of mean μ and dispersion σ

$$\tau_{mn}^{-2} = 1 + \frac{\sin^2(\pi |n - m|/N)}{(b\pi/N)^2}$$

$$n(\mathbf{k},t) = \frac{1}{N^d} \,\overline{|\langle \mathbf{k} | U(t) | \mathbf{k}_0 \rangle|^2}$$

Eigenfunction/Eigenenergy decomposition

$$n(\mathbf{k}, t) = \frac{1}{N^d} \sum_{n,m} e^{-i(E_n - E_m)t} \phi_n(\mathbf{k})\phi$$

Momentum Distribution at fixed energy E:

$$n(\mathbf{k},t) = \int n(\mathbf{k},t;E) \, dE$$

$$n(\mathbf{k}, t; E) = \frac{1}{N^d} \sum_{n, m} e^{-i(E_n - E_m)t} \phi_n(\mathbf{k}) \phi_n^*(\mathbf{k}_0) \phi_m(\mathbf{k}_0) \phi_m^*(\mathbf{k}) \,\delta(E - \frac{E_n + E_m}{2})$$

$$U(t) = e^{-iHt}$$
 or a quantum map

ition:
$$H|\phi_n\rangle = E_n|\phi_n\rangle$$

 $\phi_n^*(\mathbf{k}_0)\phi_m(\mathbf{k}_0)\phi_m^*(\mathbf{k})$

(or Floquet eigenstates and quasi-energies)

$$U|\phi_n\rangle = e^{iE_n}|\phi$$

Interference-Free Classical (Diffusive) Background and Relation to Spectral Function

Absence of correlations between norm and phase of the eigenstates in direct space

> **Numerically-approved: Works well** for the models explored here!

CFS Contrast in the Long-Time Limit at Finite Size

$$\Lambda_N(\mathbf{k}, t; E) = \frac{n(\mathbf{k}, t; E) - n_D(\mathbf{k}; E)}{n_D(\mathbf{k}; E)} = \frac{n}{n_D(\mathbf{k}; E)}$$

$$n(\mathbf{k}, t; E) = \frac{1}{N^d} \overline{\sum_{n} |\phi_n(\mathbf{k})|^2 |\phi_n(\mathbf{k}_0)|^2 \delta(E - E_n)} + \frac{1}{N^d} \overline{\sum_{n} |\phi_n(\mathbf{k})|^2 \delta(E - E_n)} + \frac{1}{N^d$$

$$, t = \infty; E) = \frac{1}{N^d \rho(E)} \overline{\sum_n |\phi_n(\mathbf{k}_0)|^4 \, \delta(E - E_n)} - 1$$
Fourier Transform
$$\phi_n(\mathbf{k}) \to \phi_n(\mathbf{r})$$

$$\mathbf{A}_N(\mathbf{k}_0, t = \infty; E) = 1 - \frac{\overline{\sum_n |\phi_n(\mathbf{r})|^4 \, \delta(E - E_n)}}{\overline{\sum_n \delta(E - E_n)}}$$
IPR ~ N^{-D_2}

Figure 3. CFS contrast peak in the long-time limit ($t \gg \tau_H$) and its scaling (56) with system size N. (a) PRBM model with different b and at E = 0. (b) RS model averaged over E with different a. (c) 3DKR model with K = 1.58. Symbols are numerical data for different system sizes. Dashed black lines are Eq. (56), i.e. a single parameter fit $y = \alpha N^{-D_2}$ with α the fit parameter and D_2 independently determined from scaling of the moments (1) in direct space (for PRBM and RS) or taken from [68] (for 3DKR). See Appendix B for numerical procedure.

References: M. Martinez et al., PRR 3, 032044 (2021) M. Martinez et al., <u>scipost_202210_00061v1</u>

CFS Contrast in the Large Size Limit at Finite Time

CFS arises from the **non-ergodicity** of the eigenstates and it no longer depends on N

Using Fourier transform from k-space to direct standard term-cancellation approximations, one can show that:

 $\Lambda_N(\mathbf{k}_0, t; E) = K_N(t; E) - P_{return}(t; E)$ **Spectral Form Factor** n,m,\mathbf{r}

4 eigenfunctions : It will encode D₂

$$t \ll \tau_H$$

space,
$$\phi_n(\mathbf{k}) = \sum_{\mathbf{r}} \phi_n(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{r}}$$
, and some

 $K_N(t; E) \rightarrow \kappa$ Spectral Compressibility $\kappa = 1 - D_1/d$ (B-G conjecture) $P_{return}(t; E) \sim t^{-D_2/d}$

Power-Law Random Banded Matrix Model

3D Random Kicked Rotor Model

Ruijsenaars-Schneider Model

We have studied the CFS peak in critical disordered systems with multifractal eigenstates and showed that the CFS peak height time and system size dependence give access to fractal dimensions D_1 and D_2 .

We have demonstrated that there exist two distinct dynamical regimes:

- When $t \ll \tau_H$ (infinite system size limit)
- CFS arises from the nonergodicity of the eigenstates.
- We also provide a full description of the shape of the CFS peak.
- When $t \gg \tau_H$ (infinite time limit)
- CFS is caused by the system boundaries.
- We also provide an analysis of the CFS peak shape.

- The CFS peak height reaches the compressibility $\kappa = 1 - D_1/d$ with a temporal power-law related to D_2 .

- The height of CFS peak goes to 1 with a finite-size correction related to multifractal dimension D_2 ,

Question: Can we extract other fractal dimension from the dynamics of the peak shape?

