GDR Complexe Workshop – December 2022

In-depth interaction with opaque scattering media

Arthur Goetschy

Collaborators

Yale: H. Cao's group Missouri: A. Yamilov Ankara: H. Yilmaz Los Angeles: H.Hsu

Context: wavefront-shaping in complex systems

Mosk et al., Nature Photon. (2012)

Objective Maximize $I = \langle \psi^{\text{out}} | \psi^{\text{out}} \rangle = \langle \psi^{\text{in}} | t^{\dagger} t | \psi^{\text{in}} \rangle$

Similar problems

dwell-time, absorption, energy in embedded target, information, remission, etc

Context: wavefront-shaping in complex systems

Naive picture

Focusing outside

Naive picture

Naive picture

Naive picture

CCD image

Deposition matrix

Part I

$$\begin{split} I &= \int_{\mathcal{V}} \mathrm{d}\mathbf{r} \, | \, \psi(\mathbf{r}, \omega) |^2 \\ &= \langle \psi^{\mathrm{in}} | \mathcal{Z}^{\dagger} \mathcal{Z} | \psi^{\mathrm{in}} \rangle \end{split}$$

Bender, Yamilov, Goetschy, Yilmaz, Hsu, Cao, Nature Phys. (2022)

CCD image

Deposition matrix

Part I

$$I = \int_{\mathcal{V}} \mathrm{d}\mathbf{r} \, |\, \psi(\mathbf{r}, \omega)|^2$$
$$= \langle \psi^{\mathrm{in}} | \mathcal{Z}^{\dagger} \mathcal{Z} | \psi^{\mathrm{in}} \rangle$$

Eigenvalue distribution at different depths

I = eigenvalue of $\mathcal{Z}^{\dagger}\mathcal{Z}$

Maximum energy enhancement

Part I

 M_1 pixels

Indep speckle grains

 $\mathcal{Z} \sim \, M_2 \, x \, M_1$ Gaussian random matrix

 $I_{\max} = \max \text{ eigenvalue of } \mathcal{Z}^{\dagger} \mathcal{Z}$

 $I_{\max} = \max$ eigenvalue of $\mathcal{Z}^{\dagger}\mathcal{Z}$

$$\frac{I_{\max}}{\langle I \rangle} = \left(1 + \sqrt{\frac{M_1}{M_2}}\right)^2 \simeq \frac{M_1}{M_2}$$

Part I Delivering energy in deep targets Maximum energy enhancement \mathcal{I} M_1 pixels \mathcal{I}

Indep speckle grains

 $\mathcal{Z} \sim \, M_2 \, x \, M_1$ Gaussian random matrix

 $I_{\max} = \max$ eigenvalue of $\mathcal{Z}^{\dagger}\mathcal{Z}$

$$\frac{I_{\max}}{\langle I \rangle} = \left(1 + \sqrt{\frac{M_1}{M_2}}\right)^2 \simeq \frac{M_1}{M_2}$$

Total intensity indep of target size:

$$\langle I \rangle \simeq M_2 \langle I_{\text{speckle}} \rangle \implies I_{\text{max}} \simeq M_1 \langle I_{\text{speckle}} \rangle$$

Include long-range correlations $\mathcal{Z} \sim \text{ non Gaussian}...$

In experimental conditions

Part I

Accessing in-depth information

Part II

Bender, Goetschy, Yilmaz, Hsu, Palacios, Yamilov, Cao, PNAS (2022)

Accessing in-depth information

Part II

Accessing in-depth information

Eigenvalue distribution at different distances d

Example

at
$$d \simeq 10 \,\ell, \ \langle \rho \rangle = 1\%$$
 but $\rho_{\rm max} = 10\%$

Accessing in-depth information

Eigenvalue distribution at different distances d

Example

at
$$d \simeq 10 \,\ell, \ \langle \rho \rangle = 1\%$$
 but $\rho_{\text{max}} = 10\%$

Maximum remission enhancement

$$\frac{\rho_{\max}}{\langle \rho \rangle} \simeq \frac{M_1}{M_2} + M_1 C_2$$

Accessing in-depth information

Eigenvalue distribution at different distances d

Example

at
$$d \simeq 10 \,\ell, \ \langle \rho \rangle = 1\%$$
 but $\rho_{\rm max} = 10\%$

Remission eigenvalue ρ

Maximum remission enhancement

$$\frac{\rho_{\max}}{\langle \rho \rangle} \simeq \frac{M_1}{M_2} + M_1 C_2 \underset{\uparrow}{\sim} \frac{M_1}{k\ell}$$

$$C_2(d) \simeq \frac{\ln(kd/\pi M_1)}{k\ell}$$

Accessing in-depth information

Consequence: higher sensitivity

Part II

Sensitivity map for the presence of a small absorber

$$S(\mathbf{r}) = \frac{dI(\mathbf{r}_{\text{out}})}{d\epsilon(\mathbf{r})} \sim \operatorname{Re}\left[\psi(\mathbf{r}_{\text{out}})G_0(\mathbf{r}_{\text{out}},\mathbf{r})^*\psi(\mathbf{r})^*\right]$$

Conclusions

Deposition matrix

•
$$I_{\max} \sim \frac{L}{\ell} \langle I \rangle \gg \langle I \rangle$$

• Crucial role of long-range non-Gaussian correlations

 \mathcal{Z}

Bender, Yamilov, Goetschy, Yilmaz, Hsu, Cao, Nature Phys. (2022)

Remission matrix

\mathcal{R}

- Enhanced remission and sensitivity $\rho_{\max} \sim \frac{M_1}{k\ell} \langle \rho \rangle \gg \langle \rho \rangle$
- Applications: DOT, fNIRS

Bender, Goetschy, Yilmaz, Hsu, Palacios, Yamilov, Cao, PNAS (2022)

What next? Pulse excitation and time-gated matrix

Addendum

Long-range correlations and energy enhancement

		g (C ₂ =2/3g)	M ₂ > g	$\frac{U_{\max}}{\langle U \rangle} \sim \frac{M_1}{g}$	
Closed geometry (negligible transverse spreading)		$M_1 \frac{\ell}{L}$	$M_2\gtrsim M_1\frac{\ell}{L}$	$rac{L}{\ell}$	
Open geometry	2D	$k\ell$	$M_2 \gtrsim k\ell$ $\frac{M_1}{k\ell}$		
(transverse spreading	3D	$\sqrt{M_1}k\ell$	$M_2\gtrsim \sqrt{M_1}k\ell$	$\frac{\sqrt{M_1}}{k\ell}$	

RMT model for the deposition matrix

Closed geometry

Eigenvalue distribution ~ bimodal

Open geometry

Incomplete channel control \checkmark Filter the matrix with projectors: $\tilde{t} = P^{\text{out}} t P^{\text{in}} =$

RMT + Feynman diagrams

Free probability
$$p_{\tilde{t}^{\dagger}\tilde{t}}(\tilde{T}) = f\left(p_{t^{\dagger}t}(T), m^{\text{in}}, m^{\text{out}}\right)$$

fraction of controlled channels

(t _{1,1}	t _{1,2}	t _{1,3}	t _{1,4}	t _{1,5}	t _{1,6}	t _{1,7}	t _{1,8}	t _{1,9}	t _{1,10}
	t _{2,1}	t _{2,2}	t _{2,3}	$t_{2,4}$	t _{2,5}	t _{2,6}	t _{2,7}	t _{2,8}	t _{2,9}	t _{2,10}
	t _{3,1}	t _{3,2}	t _{3,3}	t _{3,4}	t _{3,5}	t _{3,6}	t _{3,7}	t _{3,8}	t _{3,9}	t _{3,10}
	t4,1	t _{4,2}	t _{4,3}	$t_{4,4}$	t _{4,5}	t _{4,6}	t _{4,7}	t _{4,8}	t _{4,9}	t _{4,10}
	t _{5,1}	t _{5,2}	t _{5,3}	t _{5,4}	t _{5,5}	t _{5,6}	t _{5,7}	t _{5,8}	t _{5,9}	t _{5,10}
	t _{6,1}	t _{6,2}	t _{6,3}	t _{6,4}	t _{6,5}	t _{6,6}	t _{6,7}	t _{6,8}	t _{6,9}	t _{6,10}
	t _{7,1}	t _{7,2}	t _{7,3}	t _{7,4}	t _{7,5}	t _{7,6}	t _{7,7}	t _{7,8}	t _{7,9}	t _{7,10}
	t _{8,1}	t _{8,2}	t _{8,3}	$t_{8,4}$	t _{8,5}	t _{8,6}	t _{8,7}	t _{8,8}	t _{8,9}	t _{8,10}
	t _{9,1}	t _{9,2}	t _{9,3}	t _{9,4}	t _{9,5}	t _{9,6}	t _{9,7}	t _{9,8}	t _{9,9}	t _{9,10}
	t _{10,1}	t _{10,2}	t _{10,3}	t _{10,4}	t _{10,5}	t _{10,6}	t _{10,7}	t _{10,8}	t _{10,9}	t _{10,10}